
Session #3C 

American Society for Engineering Education April 4-5, 2003 – Valparaiso University, Valparaiso, IN  
2003 IL/IN Sectional Conference 

158 

TEACHING MECHANICAL ENGINEERS ABOUT EMBEDDED 
PROGRAMMING  

 
Peter H. Meckl1 

 
 

                                                       
1 Peter H. Meckl, School of Mechanical Eng., Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088, meckl@ecn.purdue.edu. 

Abstract ?  This paper describes an elective course on 
Microprocessors in Electromechanical Systems, taught in 
Purdue’s School of Mechanical Engineering.  The course 
uses a Motorola 68HC12 microcontroller in a sequence of 
laboratory exercises to introduce students to modular 
embedded programming.  Students can develop embedded 
code to control a variety of electromechanical systems, 
including an air-driven engine, a controllable refrigeration 
cycle, an inverted pendulum, and an active mass damper 
applied to a small building model.  Some of these hardware 
projects will be described in more detail.   

INTRODUCTION 

For many years, Purdue's School of Mechanical Engineering 
has been instrumental in making mechanical engineers 
aware of electronics and control.  For almost two decades, 
the School of ME has offered an elective course in 
Microprocessors in Electromechanical Systems to expose 
mechanical engineers to programming and interfacing of 
microcomputers.  In the past year, this course has been 
significantly updated, replacing an Intel 80C188EB 
microprocessor with the Motorola 68HC12 microcontroller.  
This new microcontroller contains on-board FLASH 
memory, where students can store code that remains viable 
even after power is turned off.  And with sophisticated 
integrated software tools, FLASH programming can be 
accomplished with little more than the click of a button. 
 

COURSE OVERVIEW 

The current course on Microprocessors in Electromechanical 
Systems (ME 586) focuses on the use of microcontrollers for 
control system implementation.  The lectures and laboratory 
assignments have been designed to satisfy the following 
three objectives: (1) provide a basic knowledge of 
microprocessors, their architecture, and their programming; 
(2) provide the tools for interfacing microprocessors with 
peripheral devices, including digital I/O, analog I/O, and 
serial communication; and (3) provide experiences in 
utilizing microprocessors for real-time measurement and 
control.  Although this course is a graduate course, 
undergraduates are encouraged to participate.  Thus, both 
lectures and laboratory assignments have been designed to 
provide the necessary background to make sure that both 
undergraduates and graduate students make similar progress.  
Supplementary references are provided as necessary. 

Since mechanical engineering curricula typically do not 
include courses on digital logic circuits, assembly language 
programming, and microprocessor interfacing, this course is 
designed to introduce these topics to mechanical engineers.  
In this way, they can develop their expertise for 
implementing microprocessor-based controllers toward the 
end of the semester, without having to take several courses 
that cover these topics in depth in the electrical engineering 
department.  The ultimate goal is to have the students control 
actual electromechanical systems with microcontrollers. 

Lectures have been designed to introduce students to various 
basic concepts that are crucial to programming and 
interfacing with microprocessors.  These topics include 
digital logic, microprocessor architecture, assembly 
language programming, digital I/O, serial communication, 
interrupts, and analog-to-digital conversion.  In addition, 
since not all students have the same level of control 
background, some lectures are devoted to fundamentals of 
classical control design, including controller gain selection, 
integrator windup, and digital implementation.  Since 
actuators and sensors represent a vital connection between 
the microprocessor controller and the system to be 
controlled, some time is devoted to a discussion of stepper 
motors and drivers, incremental optical encoders for position 
measurement, and issues of digital sampling and aliasing. 

MOTOROLA 68HC12 MICROCONTROLLER 

The laboratory includes 8 stations, each of which consists of 
a Pentium 4 personal computer, a Motorola 68HC12-based 
microcontroller board with its own analog I/O capabilities, a 
proto-board, and a mixed-signal oscilloscope.  In addition, a 
variety of digital logic chips and discrete electronic 
components are available. 

The 68HC12-based microcontroller board is an Adapt912 
board purchased from Technological Arts [1], as shown in 
Fig. 1.  It consists of a Motorola 68HC912B32 
microcontroller, along with facilities for serial 
communication via an RS-232 connection, a Background 
Debug Mode (BDM) connector for downloading and 
debugging assembly code, and circuitry for stepping up the 
input to 12 volts to program the FLASH memory.  A 
companion board provides op-amp circuitry to scale, bias, 
and buffer the eight analog inputs and to low-pass filter the 
two pulse-width-modulated outputs to generate true analog 
output signals.   



Session #3C 

American Society for Engineering Education April 4-5, 2003 – Valparaiso University, Valparaiso, IN  
2003 IL/IN Sectional Conference 

159 

 

 
 

FIGURE 1 
TOP VIEW OF THE ADAPT912 MICROCONTROLLER BOARD 

(PHOTO COURTESY OF TECHNOLOGICAL ARTS) 
 

The Motorola 68HC12 is a 16-bit microcontroller with 1 KB 
RAM, 768 bytes EEPROM, and 32 KB FLASH memory on 
chip.  It also contains an 8-channel 10-bit analog-to-digital 
converter and two 16-bit pulse-width-modulated outputs.  In 
addition, it supports an RS232 serial communication 
interface and Background Debug Mode (BDM). 

The Adapt912 board and associated circuitry has been 
enclosed in a box with BNC connectors to make it easy to 
interface external signals with the microcontroller.  A top 
view of the front panel of the box is shown in Fig. 2.  
Connections for eight analog inputs are on the upper left, 
connections for two analog outputs are on the upper right.  
In addition, a DB9 serial connector provides serial I/O with 
the PC.  A BDM cable from P&E Microcomputer Systems 
[2] provides a parallel interface between the 68HC12 and the 
PC for program downloading and debugging.  Finally, a jack 
is provided in the back of the box for an interrupt input.  

The Motorola 68HC12 microcontroller was chosen instead 
of other competitive products (from Intel, Infineon, and 
Microchip) for several important reasons.  First and foremost 
was the small size of the chip itself, no bigger than the size 
of a thumbnail.  This permits the entire board to be no larger 
than the size of a credit card, making it feasible to integrate a 
microcontroller into a variety of hardware devices for true 
embedded control.  Motorola microcontrollers use the so-
called Princeton architecture, which means that both code 
and data share the same memory space.  This makes it 
consistent with the ubiquitous Intel-based microprocessors 
found in most personal computers.  Also, Motorola is the 
leading brand of microcontrollers in many key industries, 
such as automotive, making it likely that students would find 
themselves working with a Motorola chip in their future 
employment.  Finally, the Background Debug Mode 
interface makes it simple to communicate with the 
microcontroller for downloading code into the FLASH 
memory and debugging programs once installed in memory. 

 
FIGURE 2 

FRONT PANEL FOR THE ADAPT912 CIRCUIT BOX. 

 

The 68HC12 microcontroller in particular was chosen based 
primarily on the 16-bit data wordlength.  This allows the 
microcontroller to be easily programmed in C, the 
programming language of choice for embedded control 
applications.  A new integrated development software 
package from IAR Systems [3] permits program 
development in both assembly and C code on the PC, with 
seamless connection to the IAR C-SPY debugger for 
downloading and remote debugging of code running on the 
68HC12.  This debugger permits true source-level 
debugging, whether programs are written in assembly or C 
code.  Thus, the capabilities and programming ease of a 
high-level language like C is coupled with the embedded 
control environment provided by stand-alone processors. 

EMBEDDED CONTROL LABORATORY 

The embedded control laboratory complements the lectures 
by providing hands-on experiences for learning the course 
concepts.  Students have opportunities to actually build 
circuits and to program microcontrollers to achieve desired 
control objectives.  In the laboratory, students use the PCs 
for software development and user interfaces for their 
embedded controllers.  They use the 68HC12-based 
microcontroller board for interrupt-driven programming and 
implementation of most of their control schemes.  With its 
analog input/output capabilities, the 68HC12 can be used as 
a stand-alone processor to control a variety of 
electromechanical systems.  The Adapt912 microcontroller 
board is an excellent vehicle to introduce students to the 
lowest level of real-time control programming, providing the 
ability to "burn" program code into FLASH memory for 
direct control of the microprocessor.  As such, it represents 

 1          2      3  4 

  5          6      7   8 

A/D D/A 

 
 1 

 2  
RESET 



Session #3C 

American Society for Engineering Education April 4-5, 2003 – Valparaiso University, Valparaiso, IN  
2003 IL/IN Sectional Conference 

160 

an analog of the type of stand-alone electronic control 
module found, for example, on automotive engines. 

All students perform the first seven labs, which are designed 
to introduce the fundamentals of microcomputer hardware, 
software, and interfacing.  After that, students are free to 
select three projects from a list of different 
electromechanical project setups.  These include a two-link 
robotic manipulator, a dc motor speed control, a 
heating/cooling system, an inverted pendulum, a four-
cylinder air-driven engine, a controllable refrigerator, and an 
active mass damper.  

In the first laboratory assignment, students are acquainted 
with the hardware and software environment that they will 
be using for the semester.  Even though they have not yet 
been exposed to assembly language programming, it is 
essential that students become familiar with the IAR 
Embedded Workbench (EW) programming environment that 
they will be using for the rest of the semester.  Thus, 
students are provided with a partial assembly program, with 
a listing of what the completed code should look like.  They 
then use the editor within IAR EW to finish typing up the 
assembly code.  Once they set the required options for 
“building the project,” they compile and link their program.  
If any errors occur, they can click on the error in the 
Message Window, which takes them right back to the editor, 
with the cursor positioned at the code statement where the 
error occurred.  Once they get an error-free executable file, 
they can run the program directly, or trace through its 
execution within IAR C-SPY to debug their logic.  All steps 
of the program development process are integrated within 
IAR EW as one seamless software package. 

Also in the first lab, students are exposed to C programming, 
the language that will be used for developing most of the 
higher-level operations of their embedded control code.  
They learn that the same software development tool can be 
used for both assembly and C programming, and they can 
see the actual assembly instructions corresponding to their C 
programs to appreciate the underlying low-level commands. 

The second laboratory assignment focuses on digital logic 
circuits, both combinational and sequential.  It is designed to 
expose students to the fundamental binary operations that 
take place in the heart of the microcontroller.  First, students 
are asked to build simple half-adder and full-adder circuits 
out of TTL logic devices to construct a 4-bit adding 
machine.  They also build a logic circuit that sets several 
different outputs, depending on whether two binary input 
numbers are equal, even or odd, or positive or negative.  
Finally, they use several NOR gates with feedback to 
construct an SR flip-flop, which they then use to construct a 
memory register. 

Laboratory Assignment 3 introduces students to Motorola 
CPU12 assembly language programming.  During the first 
week, students look at some simple code, perform a program 

assembly and disassembly, and become familiar with the 
operations associated with several instructions using 
different addressing modes.  They use the C-SPY Simulator 
within the IAR EW environment to examine the 
microcontroller registers before and after each operation.  
They are then asked to write a simple program that takes a 
set of integers and finds the average.  This program is to run 
successfully on the C-SPY Simulator, which emulates the 
68HC12 on the PC. 

During the second week of Lab 3, students learn about the 
Adapt912 microcontroller board and its associated memory 
map.  Their task this week is to convert their earlier 
assembly program to a form that will run on the Adapt912.  
Most of the required changes have to do with relocating the 
data and code into appropriate memory locations.  Once 
these changes have been made, students can assemble and 
link their code using IAR EW as before.  Once built, they 
can use the C-SPY debugger to download the code directly 
to FLASH on the Adapt912 and then run the program.  A 
final task is to write a program that mimics the digital logic 
circuit that was written in Lab 2.  In this way, it exercises 
their ability to handle digital I/O with the Adapt912. 

Laboratory Assignment 4 focuses on serial communication.  
The ultimate objective is to link the microcontroller with the 
PC via the serial line so that programs can exchange 
information in both directions.  This is a valuable 
contribution, since eventually, students will be programming 
their microcontroller to perform real-time control while the 
PC is configured as a user interface to send setpoints and 
display signals.  Initially, students write simple subroutine 
modules for the 68HC12 that initialize the communication 
settings (baud rate, data format, etc.) and establish serial I/O.  
This exercise teaches students about programming on-board 
peripherals using status and control registers.  Their code 
must check whether data has been received on the serial 
communication line before reading it in, and also must check 
that the transmit buffer is empty before sending data out.  
Once these modules are working, the students generate code 
that uses specific key presses to increment and decrement a 
counter, which is displayed on the PC screen via 
HyperTerminal.  This exercise also familiarizes students 
with conversion from binary to ASCII characters. 

Laboratory Assignment 5 exposes students to interrupts and 
interrupt programming.  Students use a clock signal of 
varying frequencies as an external interrupt input to the 
microcontroller.  They develop an interrupt service routine 
that, at each cycle of the external clock, increments a 
counter.  An internal timer, set to a specified frequency, 
generates another interrupt, which instructs the 
microcontroller to store the counter associated with the 
external clock signal.  The number of counts divided by the 
time programmed into the timer gives the external clock 
frequency.  This lab illustrates the ability to use external 
events to alter program execution, and develops the 



Session #3C 

American Society for Engineering Education April 4-5, 2003 – Valparaiso University, Valparaiso, IN  
2003 IL/IN Sectional Conference 

161 

programming skills necessary to establish interrupt-driven 
timing for real-time control.  It also helps reinforce the 
notion of modular programming, since the same serial I/O 
routines from Lab 4 are used to display the counter value. 

So far, students have done all their programming in CPU12 
assembly language.  However, it would be unreasonable to 
expect them to generate all embedded control code for the 
projects in assembly code.  Therefore, Lab 6 introduces 
students to mixed-language programming.  They essentially 
create C-callable serial I/O modules that mimic those from 
Lab 4.  Thus, the low-level access of status and control 
registers is still done in assembly, but the results are passed 
on to C so that C can be used for higher-level processing.  
They then redo the up-down counting experiment from Lab 
4 in C code.  This allows them to compare the resulting 
assembly code generated after compiling C code with the 
original assembly code from Lab 4 to gain an appreciation 
for the efficiency of assembly programming. 

Laboratory Assignment 7 introduces students to analog-to-
digital (ADC) and digital-to-analog conversion (DAC).  
After wiring up a simple 8-bit DAC, students use the digital 
input on the 68HC12 together with the DAC to develop a 
counting ADC.  Once they understand the hardware 
associated with analog/digital conversion, they are given a 
set of C-callable assembly routines for the 68HC12 to access 
its own analog inputs and outputs.  These routines then serve 
as building blocks for writing control code for the 
electromechanical projects. 

ELECTROMECHANICAL PROJECTS 

Once all seven of these labs have been completed, students 
begin their selected projects.  Each setup is an 
electromechanical system, complete with required sensors 
and actuators.  Most of the interfacing circuitry has already 
been incorporated to allow students to focus on real-time 
control programming.  Each system has inherent 
nonlinearities that must be addressed during control design 
and implementation.  For each project, students must 
calibrate the sensors, perform some system identification to 
obtain approximate system models, design a suitable 
controller, simulate that controller with their system model 
in Simulink [4], and finally, implement their controller using 
the 68HC12 microcontroller.  Students use timer interrupts 
to establish a uniform sample rate at which to run their 
digital controllers. 

A brief description of several of the projects follows.  The 
two-link robotic manipulator has a cylindrical base joint that 
allows rotation about a vertical axis and a second rotational 
joint that permits motion in a vertical plane.  Both axes are 
driven by stepper motors.  Students must develop the 
appropriate open-loop commands to the stepper motors to 
achieve a desired trajectory.  In addition, they must 
coordinate the motions of the two axes to ensure that the 
desired trajectory is followed accurately. 

The dc motor includes an incremental optical encoder that 
generates a pulse train as function of angular rotation.  
Students must develop the software to convert this signal to 
a velocity measurement, and then must develop a suitable 
control scheme to maintain motor speed in the presence of 
torque disturbances. 

The heating/cooling system represents a simple model of a 
heating and air-conditioning system that would be used in a 
commercial building.  A resistance heater is used to heat up 
a small aluminum block, while a small computer fan is used 
to achieve cooling.  Both actuators only work in one 
direction; the heater only heats, while the fan only cools.  
Thus, students must develop a strategy that uses the 
temperature of the block as single input to determine the 
action of the two different actuators.  A block diagram 
illustrating this control system is shown in Figure 3.  
Students must achieve desired temperature settings while 
minimizing energy consumption. 

The inverted pendulum is a classic project, consisting of a 
two-foot rod hinged at the bottom and connected to a 
movable cart, powered by a dc motor (see Fig. 4).  
Potentiometers at the hinge and along the track indicate rod 
angle and cart position.  Students must use these two signals 
to generate an appropriate control strategy for the cart motor 
that stabilizes the unstable dynamics of the inverted 
pendulum while ensuring that the cart does not run off the 
ends of the track. 

The four-cylinder engine, shown in Fig. 5, represents a 
table-top model that operates on shop air.  A computer-
controlled valve regulates the air pressure to the individual 
cylinders so as to maintain desired speed.  A dc generator, 
mounted to the engine crankshaft, can be used as a 
dynamometer to absorb varying loads from the engine.  The 
objective of the project is to adjust the air valve so as to 
maintain speed in the presence of torque disturbances from 
the generator.  The challenge is the friction associated with 
the valve, requiring that students add a local feedback loop 
around the valve itself to ensure reliable operation.  A 
typical engine speed response is shown in Fig. 6.  The 
engine starts at 1000 RPM when a torque disturbance is 
applied at around 2 sec, which initially slows down the 
engine.  However, within 1 sec, the controller manages to 
bring the speed back up to 1000 RPM.  The same thing 
happens when the torque disturbance is removed at 6 sec. 

The controllable refrigerator is a conventional refrigerator 
compressor, condenser, and coil, but it uses a computer-
operated expansion valve in place of the capillary tube (see 
Fig. 7).  In this way, the flow of coolant can be controlled so 
as to achieve maximum efficiency while maintaining desired 
cold temperatures.  Several temperature and pressure sensors 
are distributed throughout the coolant circuit.  Students must 
decide which of the sensors to use to achieve their feedback 
control strategy. 



Session #3C 

American Society for Engineering Education April 4-5, 2003 – Valparaiso University, Valparaiso, IN  
2003 IL/IN Sectional Conference 

162 

Controller
Aluminum

Block

Heater

Ref.

Temp.

Actual

Temp.

Ambient
Disturbance

+ _

Fan

D/A + _

u2

u1

ThermocoupleA/D

+

 
 

FIGURE 3 
BLOCK DIAGRAM OF THE HEATING-COOLING CONTROL SYSTEM. 

 
 

 
FIGURE 4 

PHOTOGRAPH OF THE INVERTED PENDULUM SYSTEM. 
 
 

 

FIGURE 5 
PHOTOGRAPH OF THE 4-CYLINDER AIR-DRIVEN ENGINE SYSTEM. 

Step Load Disturbance Cycle (On/Off)

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10 12

Time (sec)

E
n

g
in

e
 S

p
e

e
d

 (
R

P
M

)

 
 FIGURE 6 

ENGINE SPEED RESPONSE FOR 4-CYLINDER ENGINE WHEN TORQUE 
DISTURBANCE IS APPLIED AT 2 SEC AND REMOVED AT 6 SEC. 

 
 

 

FIGURE 7 
PHOTOGRAPH OF THE CONTROLLABLE REFRIGERATOR SYSTEM. 

 
 

 

FIGURE 8 
PHOTOGRAPH OF THE ACTIVE MASS DAMPER SYSTEM. 

 
 



Session #3C 

American Society for Engineering Education April 4-5, 2003 – Valparaiso University, Valparaiso, IN  
2003 IL/IN Sectional Conference 

163 

The active mass damper, shown in Fig. 8, is designed to 
emulate the vibration absorbing systems used in some high-
rise buildings.  It consists of a pair of thin metal plates that 
represent tall  “building” walls and a powered mass that can 
traverse across the top floor of the “building.”  An 
accelerometer measures the vibration at the top of the 
“building” when the bottom floor is excited by a shaker that 
simulates an earthquake.  The control objective is to use the 
accelerometer measurement to control the motion of the 
mass so that it moves opposite the motion of the “building” 
and effectively damps out the vibration. 

CONCLUSIONS 

A microprocessor course for mechanical engineers at Purdue 
University has been described.  It emphasizes programming 
and interfacing of a microcontroller, with ultimate 
application to several electromechanical control projects.  A 
68HC12 microcontroller board is used for all embedded 
programming.  An integrated development software package 
makes it easy to write and debug programs in both assembly 
and C code.  Students are encouraged to exercise modular 
programming by preparing low-level serial I/O routines and 
other utility programs that are used for other programs later.  
The course culminates in a series of projects that allow 
students to design controllers for various electromechanical 
systems to achieve desired control objectives.  These 
projects include an inverted pendulum, heating/cooling 
system, air-driven four-cylinder engine, controllable 
refrigerator, and active mass damper. 

ACKNOWLEDGMENT 

The author gratefully acknowledges IAR Systems (San 
Francisco, CA) for donating the IAR Embedded Workbench 
and C-SPY software at cost. 

REFERENCES 
[1] Technological Arts, Toronto, Ontario, Canada, 

http://www.technologicalarts.com/. 

[2] P & E Microcomputer Systems, Inc., Woburn, MA, 
http://www.pemicro.com/ 

[3] IAR Systems, San Francisco, CA, http://www.iar.com/. 

[4] Simulink, The MathWorks, Inc., Cambridge, MA, 
http://www.mathworks.com/. 


