
Session #1B

American Society for Engineering Education April 4-5, 2003 – Valparaiso University, Valparaiso, IN
2003 IL/IN Sectional Conference

38

AN INTEGRATED APPROACH TO INSTRUCTION IN DEBUGGING
COMPUTER PROGRAMS: PRELIMINARY REPORT

Ryan Chmiel1 and Michael C. Loui2

Supported by the National Science Foundation under Grant SES-0138309 and an Architecture for Change grant from the College of Engineering at the
University of Illinois at Urbana-Champaign. The opinions, findings, and conclusions of this paper are not necessarily those of the National Science Founda-
tion or the University of Illinois.

1 Ryan Chmiel, Dept of Electrical and Computer Eng, University of Illinois at Urbana-Champaign, 1406 W. Green St, Urbana, IL 61801, rchmiel@uiuc.edu

2 Michael C. Loui, Dept of Electrical and Computer Eng, University of Illinois at Urbana-Champaign, 1406 W. Green St, Urbana, IL 61801,
 m-loui@uiuc.edu

Abstract — The purpose of this study was to demonstrate
that formal training in debugging helps students learn to
diagnose and remove defects in computer programs. To
accomplish this goal, students completed sets of debugging
exercises before coding the programming assignments in an
assembly language course. Each set of exercises focused on
the major topics covered in the corresponding assignment.
Students also kept debugging logs as they worked on the
assignments. In these logs, students recorded the source of
each defect and how the defect was corrected. Student re-
sponse to these exercises, in the form of surveys, has been
positive and constructive.

INTRODUCTION

Although debugging is an integral and time-consuming
aspect of software development, few computing curricula
offer formal training in debugging. Consequently, students
must develop debugging skills on their own. It is not clear
how instruction can help students improve debugging skills.
Previous researchers have proposed instruction in program
comprehension [1], code review [2], and peer review [2].

Statistics about code defects support the need for formal
debugging training. A few defect types occur frequently in
code [3]. Through training, programmers could become
aware of high frequency defects. Ideally, this awareness
would result in a reduction in these defects.

Lee and Wu developed an interactive tool to help novice
student programmers improve their debugging skills [4]. The
tool was capable of helping students identify and correct
only defects related to loops, however. Our work includes a
greater variety of defect types.

METHOD

We created one set of debugging exercises for each pro-
gramming assignment in a course on assembly language and
real-time computing. Each set of exercises contained two
types of problems. For the first type of problem, students
identify defects in short subroutines (about 20 instructions
long) using code review techniques. For the second type,
students identify and correct the defects by modifying and

testing the code with a debugging tool. In each set of exer-
cises, there are several types of defects. Most defects in a
particular set are common defects— off by one, wrong jump
condition, addressing mode error, type mismatch, and so on;
however, more obscure defects are also included to give
students practice in locating them as well.

We developed a debugging log for students to keep as
they worked on the programming assignments. The log is
modeled on a log proposed by Humphrey [2]. Upon encoun-
tering a new defect, the student records the following infor-
mation in the log: the subroutine containing the defect, the
time taken to correct the defect, the incorrect program output
and/or behavior, the faulty code, and most important, the
solution to the defect. By recording all defects in a log, the
student can keep a list of previous defects and their solutions
for use in correcting future defects.

RESULTS

In the fall of 2002, we obtained preliminary qualitative re-
sults and observed positive outcomes. Students felt that the
exercises helped improve their debugging skills. Further-
more, students suggested improvements in the exercises. For
example, they suggested that the number of defects per prob-
lem be decreased.
 We are expanding the study during the Spring 2003
semester. We believe that these additions to the course are
beneficial in improving students’ debugging skills.

REFERENCES

[1] Gugerty, L. & Olson, G.M., “Comprehension Differences in Debug-
ging by Skilled and Novice Programmers”, Empirical Studies of Pro-
grammers, 1986, pp. 13-27

[2] Humphrey, W.S., Introduction to the Personal Software Process,

1997, pp. 143-149, 159-172

[3] Spohrer, J.G. & Soloway, E., “Analyzing the High Frequency Bugs in

Novice Programs”, Empirical Studies of Programmers, 1986, pp. 230-
251

[4] Lee, G.C. & Wu, J.C., “Debug It: A debugging practicing system”,

Computers and Education, Vol. 32, No #2, 1999, pp. 165-197

