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Abstract 

 

This paper describes the integration of printed circuit board design and fabrication into a 

computer architecture course.  These printed circuit boards utilized 7400-series chips to realize 

an 8-bit ALU having the functions ADD, OR, ADD, SUB, and set-less-than.  Students designed 

and laid out the boards using electronic tools.  Their designs were sent out for fabrication and the 

resulting boards were populated and tested.  This paper presents the methods, integration, and 

assessment of this effort for student learning. 

 

Introduction 

 

The standard computer architecture course in electrical and computer engineering curricula 

typically focuses on the logical structure building an ALU and datapath.  Laboratory exercises to 

supplement lecture material often focus on the realization of a part or all of the datapath using 

electronic capture tools such as Mentor Graphics, or the implementation of the design in a 

hardware description language such as VHDL.  Aggressive, yet often failed attempts are 

occasionally made to physically fabricate components such as an ALU on a breadboard using 

7400-series chips and hook-up wire.  However, the work involved is an enormous burden on the 

student, and potential errors make debugging a nightmare.  In this paper, I will give my 

experiences in physically fabricating an ALU using capture tools, printed circuit board (PCB) 

layout, PCB fabrication, board population, and testing.  This exercise was integrated into the 

junior-senior level elective of computer architecture. 

 

The course in which this development took place is an upper-level junior/senior elective entitled 

“Computer Architecture.”  The course consists of three 50-minute lectures per week and students 

receive three credits.  The textbook for the course is the canonical Patterson and Hennesey text
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and focuses on the structure of the MIPS CPU.  The major topics covered include the instruction 

set architecture of the MIPS, ALU structure, a single-cycle, multi-cycle, and pipelined 32-bit 

datapath, and memory hierarchy. 

 

The goal of the PCB exercise was two-fold.  One, we wished for our students to have proficiency 

in designing, laying out, and populating printed circuit boards.  The second goal was to use this 

exercise to increase student comprehension of the ALU presented in the text. 

 

Design and Fabrication 

  

The design for the ALU presented in Patterson and Hennessy utilized a modular “bit-slice” 

structure.  A one-bit circuit calculated all functions of each bit in parallel and a resulting 4:1 

MUX selected the correct result given the operational code.  For addition and subtraction, a 

carry-out and carry-in bit were used to construct a ripple-adder. 

 



Since it was desired to have the students learn this design structure, the PCB design paralleled 

that of the text.  Students first assembled a full-adder circuit, then used this in a hierarchical 

block to form a bit slice.  An example bit-slice is shown in Figure 1. 

 
Figure 1 Schematic for standard bit slice, based on the text. 

 

As in the text, these bit-slices were used to form an 8-bit ALU by cascading slices together.  

Students were then asked to simulate their designs in PSpice and verify the designs. 

 

Modifications had to be made to this basic design to realize the circuit on a PCB using 7400-

series chips.  One modification was that the 4:1 MUX units are available only in pairs with a 

single select line via the 74153.  In the basic design, students used one chip per bit-slice, 

essentially wasting the second MUX on the chip.  In their optimized design, students re-created 

either 2- or 4-bit slices to utilize fully each 74153. 

 

A second optimization was in the full-adders.  Students’ designs for the full-adders went down to 

the AND/OR/NOT gate level.  This requires 7 gates for each full-adder for a total of 56 gates just 

for the adders.  Instead, students re-designed their circuits to use a 4-bit adder, the 7483.  This 

saved approximately 8 chips per board, but the resulting design was less elegant than the text’s 

presentation.  Students utilizing the 7483 thus typically created a 4-bit-slice and used two to 

complete their design.  A representative 4-bit-slice is shown in Figure 2. 

 
Figure 2  Optimization of design using the 7483 and implementing a 4-bit slice.  



 

The final complication for physical realization of the board was the need for input switches, LED 

indicators, and a power connector.  Students added LED indicators for the two 8-bit inputs, the 

8-bit output, and the Carry, Zero, and Overflow flags.  These were coupled with the gate design 

by using off-page connectors.  Further, certain gates require pull-up resistors, and students were 

instructed to add these as well.  Schematics for switches and LED’s are shown in Figure 3.  

  
Figure 3  Additional components for the physical realization of the circuit. 

 

When students had completed their schematic circuits, their designs were then exported to 

OrCAD PCB designer.  Students placed components manually, but used the auto-route function 

of the software to run all traces.  Students used traces twice as thick for the power and ground 

nets, and increased the default spacing for components, traces, pins and vias.  Students generated 

the artwork for their board and sent it to the professor for upload to Advanced Circuits, the PCB 

fabricator.  Turnaround was approximately five days.  A student’s completed PCB layout is 

shown in Figure 4. 

 
Figure 4  Final layout of ALU for PCB fabrication. 



 

When the boards were received from the manufacturer, each student populated the boards with 

components by soldering.  They then tested the functionality of each operation given several 

different input combinations.  Students then demonstrated the functionality of their boards to the 

instructor, who graded using a standard rubrick. 

 

Assessment 

 

The efficacy of the PCB exercise was measured using five metrics.  Four were self-assessment 

by the student, and one was by instructor evaluation.  The results are summarized in Tables 1-3. 

 

At the end of the course, students were asked to fill out a three-question survey giving their 

opinions on the efficacy of the PCB exercise.  Results are summarized in Table 1. 
Table 1 Results from student survey on PCB exercise. 

Question Average (out of 5) St Dev n 

How much did the PCB exercise help you to learn to design and 

fabricate printed circuit boards? 
4.5 0.5 18 

How much did designing the ALU for the PCB help you to 

understand the design of the 32-bit MIPS ALU? 
4.4 0.8 18 

I was successful in my design, fabrication, and testing of the 

ALU on the PCB. 
4.3 1.0 18 

 

Overall, students felt that this was a good exercise for helping them gain proficiency in designing 

PCB’s.  In the question asking them, “How much did the PCB exercise help you to learn to 

design and fabricate printed circuit boards?,” students responded positively.  All students 

answered either 4 or 5 on their responses with an average response of 4.5.  Students also felt that 

the integration of the PCB exercise into the computer architecture course helped them to 

understand the computer architecture material.  Over half of the students ranked this question as 

a 5, with an average of 4.4 for student responses.  The last question concerned whether students 

felt they were successful or not in their design.  Students average response was 4.3.  This was 

student self-assessment, and instructor assessment is dealt with below. 

 

More interesting than the success of students’ projects, though, is a gauge of students’ abilities 

after the experience.  Even if a student was not successful with their circuit, they still may have 

gained valuable skills in the process.  To measure the outcome of practical ability in PCB design, 

students were asked to self-assess on this outcome.  Results are shown in Table 2. 

 
Table 2 Outcome evaluation for PCB exercise, student self-assessment. 

Question Yes, 

Definitely (5) 

4 3 2 No, Not at 

All (5) 

Can you design and layout an 8-bit CPU 

on a printed circuit board? 12 3 3 0 0 

Mean = 4.5, Mode = 5 StDev = 0.8 n = 18 

The results show a better overall self-assessment on general ability over success in the specific 

project.  Twelve as opposed to ten students ranked their ability as a 5, and there were no 



responses in the lowest two categories.  Thus, all students felt they received some proficiency in 

PCB design, and two-thirds of them felt that they are “definitely able” to design and layout an 

ALU on a printed circuit board. 

 

Finally, Table 3 shows the result of the instructor evaluation of the boards themselves. 

  
Table 3 Board function evaluation, by instructor. 

Total Number of Boards 13 

Average Score 95.7% 

Fully Operational 7 

Minor Problems 3 

Significant Errors 2 

 

Of the thirteen boards, seven worked flawlessly.  Three had minor mistakes, but these were 

typically with the carry, zero, and overflow flags, where the operations and results were 

functional.  Two boards had significant problems, but even on both of these, the AND and OR 

functions were correct.   

 

Lessons Learned 

 

The experience of integration of this subject into a computer architecture class led to several 

conclusions.  The primary conclusion is that incorporating such an exercise has a two-fold 

benefit.  Students gain proficiency with industry-standard tools and gain the ability to design, 

have fabricated, populate, and test printed circuit boards.  Second, this exercise actually 

reinforces the main lecture material of the structure and design of an ALU. 

 

The drawbacks to this exercise are significant however.  A significant cost is incurred for the 

software ($2000), board fabrication ($50 each), and components ($21 each).  Further, the 

demand on instructor’s time must be also recognized.  It is estimated that the exercise took up 

over 100 hours of the instructor’s time for the semester, this being in addition to the lecture 

preparation, homework help, and so on.  The exercise does cut into other potential assignments, 

such as homework and other laboratory exercises, and does use a moderate amount of lecture 

time.  Even with the amelioration of other assignment load, students did typically spend more 

time on the PCB exercise, and that must also be taken into consideration. 

 

The learning curve for familiarity with the software will be mitigated upon successive 

implementations of the exercise.  However, ever-changing software often stands in the way of 

knowledge re-use.  To ease the cost of software, instructors can consider using freely-available 

tools.  For extreme cost savings, students’ board areas could be limited, and multiple smaller 

boards could be combined on one fabrication run of a larger board.  One excellent reference for 

decreasing the learning curve is found in Mitzner
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Though the costs in time and money for this project are significant, it is felt that the overall 

benefits demonstrated make it worth the time.  
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