
            24 
 
 

Using PLC Projects to Aid Teaching of Advanced Electrical Control 
Principles 

 
 

by Wm. Ted Evans 
 

Engineering Technology 
College of Engineering 

U of Toledo 
Toledo, Ohio 

 
 
 
 
Abstract  
 
A course in Programmable Controller Applications needs to concentrate the student's interests 
toward finding good employment.  While accomplishing this task, the course or courses should 
also aid and strengthen the theoretical concepts taught in other coursework.  The PID algorithm 
and other control blocks are good examples that may be used elsewhere.     
 
Several projects will be discussed.  Structure of these projects leading the student from simple 
logic to difficult logic processes and their link to other coursework will be given. 
 
 
Introduction 
 
The two-course sequence presently taught at the University of Toledo's Engineering Technology 
Department's EET Program is designed to challenge PLC students and provide more well-
prepared students for the manufacturing environment. The purpose of these courses is to provide 
programming experiences from the manufacturing environment.  
 
The first course concentrates on programming the PLC.  A choice must be made for the PLC 
manufacturer and Allen-Bradley (A-B) was chosen [1-3]. Any course should look at the PLC 
generically with programming techniques taught that are common between different vendors.  
Allen-Bradley is a good choice for teaching the PLC but other vendors should be considered as 
the industry changes and matures.  Laboratory experiences from the first course discussed 
include combinational logic labs, a binary add/subtract lab, a lab designed to implement a simple 
multiplexer and more sophisticated sequential logic labs including labs with substantially more 
rules. 
 
The second course uses the programming of the first course to control more sophisticated 
processes.  The process may include a PID block or several PLCs communicating over a 

Proceedings of the 2007 American Society for Engineering Education Annual Conference &Exposition 
Copyright © 2007, American Society for Engineering Education 

 



common data highway.  Several of these programming projects as well as their applicability to 
other courses in the curriculum are discussed.   Lab exercises include simple networking lab 
experiences, several lab experiences with the PID block, a lab using the PLC to read or write 
ASCII data, a lab to handle faults and interrupts, several lab experiences in the control of stepper 
and servo motors, and a simple I/O highway configuration experience. 
 
 
Combinational Logic 
 
This project from the first course uses coin changer rules to allow some coin entries but not other 
entries.  Outputs turn on with certain combinations of inputs. Several outputs may be used 
including “Accept”, “Change”, and “Reject”.  The student is charged to implement a program to 
control the coin changer.   
 
A coin changer is built to return change plus dispense a $.35 candy bar.  No more than three 
coins are to ever be used.  Coins to be used are dimes and quarters.  The student is directed to 
write a program to accept or reject the sale based on the coins rendered.  Coins rendered are 
checked by inputs on using push buttons or selector switches when the Request Candy Bar 
button is pushed.   
 
A layout of the inputs and outputs for the project might resemble: 
 
Inputs: 
 
Dime 1    Quarter 1 
 
 
 
Dime 2    Quarter 2 
 
  
Dime 3    Request  
     Candy Bar 
 
 
 
Outputs: 
 
     Accept     Change   Reject 
       

   
 
Modifications of the project may include the following: 
 
 Change the cost from $.35 to $.45 or $.55 for the candy bar. 
  
 Allow the user to push all coin buttons in any sequence and then push the request  button.  
 As long as the request button is pushed, the correct lights turn on. 

Proceedings of the 2007 American Society for Engineering Education Annual Conference &Exposition 
Copyright © 2007, American Society for Engineering Education 

 



  
The coin lab allows the student to create a number of different combinational or sequential logic 
rungs of logic to provide the proper output. 
 
Binary Add/Subtract in Ladder Logic 
 
 
It was noticed that students were not making a connection between the 16-bit integer word and 
the storage of 16 control bits.  Writing a number as 16 bits that could be useful in control as 
individual bits had not been stressed.  This project, also from the first course, requires the student 
to build a binary adder or other math algorithm using the PLC.  The student is required to 
program a simple binary adder or other logic device using only control bits.  The exercise serves 
as a means for the student to make a connection between the digital course’s binary adder and 
the PLC’s similar binary logic structure. 
 
 
A typical word in the PLC is stored in N7 locations beginning at address 0.  For instance, the 
first word of the N7 table is N7:0.  Addition of the contents of N7:0 to N7:1 and storing the 
results in N7:2 would resemble: 
 
 
N7:0                 
 
+  
 
N7:1                 
 
 
N7:2                 
 
 
 
The exercise requires the student to only use contacts and coils and to add two integer numbers 
found in N7:0 and N7:1. The results are placed in N7:2. 
 
An alternate exercise requires the student to subtract N7:1 from N7:0 and place results in N7:2.  
Another exercise would require the student to multiply N7:0 by N7:1 and place results in N7:2, 
N7:3.  Other exercises create the equivalent of an up counter, down counter, comparator or a 
combination of one or more of these. 
 

Proceedings of the 2007 American Society for Engineering Education Annual Conference &Exposition 
Copyright © 2007, American Society for Engineering Education 

 



The following example of ladder logic provides simple hints to the use of ladder logic for 
fundamental digital logic design. 
 
A Half Adder Designed with Ladder Logic: 
 
 
     A    B  
      X - Output  
 
     A    B  
 
 
 
     A    B 
 
       Carry 
 
 
where   N7:0/0 = A 
  N7:1/0 = B 
  N7:2/0 = X - Output 
  N7:3/1 = Carry 
 
 
While the first or right-most bit does not require a carry-in bit, all bits to the left require addition 
of the carry-in bit to determine the output and carry. 
 
 
A Full Adder Design with Ladder Logic: 
 
     A    B    CarryIn  
 
    X - Output 
 
     A    B    CarryIn  
 
 
     A    B    CarryIn  
 
 
 
     A      B    CarryIn   
 
 
 
 
 
 

Proceedings of the 2007 American Society for Engineering Education Annual Conference &Exposition 
Copyright © 2007, American Society for Engineering Education 

 



Multiplexer 
 
Multiplexer technology for entering large numbers of analog or numeric data into the PLC may 
be old technology.  However, to require the multiplexing of data into the PLC requires the 
student to use timing diagrams and other multiplexer timing logic.  The use of multiplexers 
introduces the student to timing diagrams as well as a need for logic and numeric manipulation.    
 
The lab requires the student to use the thumbwheel switches to enter a number from 0 to 9999 
into an N7 location.  They are limited to only 4 inputs and 4 outputs to the PLC from the TWS’s.  
 
 
 
 
Our TWS’s:     To work correctly, the diodes should be  
      reversed as follows:  (do not do this, however) 
 
 1 1 
 
 
 2 2 
       C                C 
  
 4  4 
 
 
 8 8 
 
 
 
 
 
With true high input and output logic, this program from the first course requires a multiplexer 
program to read the TWS's.  To do this, an output is selectively turned on to test the 1's, 10's and 
100's bits simultaneously.  If C (common) is high, then a 1, 10 or 100 is present in the number.  
Then the 1's output is turned off and the 2's output is energized.  The 2's numbers are tested and 
selectively added to the composite number.  The 4's and 8's numbers are also tested and added to 
the number in the PLC memory.  This exercise requires timing diagrams and handshake logic 
between input and output similar to the digital logic multiplexer.

Proceedings of the 2007 American Society for Engineering Education Annual Conference &Exposition 
Copyright © 2007, American Society for Engineering Education 

 



Sequential Logic 
 
The concept of sequential states using a counter is a necessary concept for the PLC programmer 
as well as the electronic designer to understand.  The following program may be created to 
control the on-off control of three pumps. 
 

Three Pumps: 
 
Three pumps are arranged as follows to provide cooling water for a manufacturing plant.  For 
cooling to occur, at least one of the pumps must be on at all times but if no cooling is required, 
all pumps are to be turned off.  For more cooling, a second pump is requested to turn on, 
followed by a third pump if sufficient cooling is still not received.  To protect each from wearing 
out prematurely, a plan has been devised to allow each pump to turn on and off by using logic to 
turn on the next pump in sequence and turn off the pump that has been on the longest.  Timers 
should not be used to determine the pump on longest but rather logic should be used to determine 
which pump should have been on the longest.  For example, if pump 2 and 3 are on but 1 is off, 
pump 2 is the one that should be turned off since it probably came on before 3 did.  If a call for 
less cooling is received and all three pumps are on, the pump that was logically on for the longest 
time should be turned off.  The system starts out with no pumps on and when a call for more 
occurs, pump 1 will turn on.  Then the system is cyclical rotating through pumps 2, 3, 1, 2, etc. 
 
 
 
 
 More  
                                                                       Pump 1  
 Less 
 
 
 

Pump 2 
 
 
 

Pump 3 
 
 
 
 
A second program to require students to write concerning sequential logic might include: 
 
Write a program that turns on a light for 5 seconds when the operator pushes button 1, 2, 1, 2 in 
that sequencial order. 

Proceedings of the 2007 American Society for Engineering Education Annual Conference &Exposition 
Copyright © 2007, American Society for Engineering Education 

 



Communications Interfaces 
 
The student usually finds it difficult to log onto the PLC incorporated into a network after only 
having to log onto stand-alone PLC processors in the first course.  The process of logging onto a 
particular processor in a local network takes time and some persistence.   
 
The exercise pictured below requires the student to log into two PLCs simultaneously and 
control a program in one PLC to read data from a second PLC.  This exercise is part of the 
second course.  When the control data bit is toggled on in the PLC pictured at the left, the Read 
MSG (Message) is activated causing the PLC at left to read data from the PLC at right. 
 

 
 
 

 

 
 
 
Notice that the applications are simultaneously displayed with active data from each PLC being 
viewed. 

 
  
 
 

Proceedings of the 2007 American Society for Engineering Education Annual Conference &Exposition 
Copyright © 2007, American Society for Engineering Education 

 



PID Algorithm 
 
The PID algorithm may be programmed and used to control devices using the PLC. Tuning and 
implementation of the basic PID block is a first exercise. Control of a water valve for flow was 
the PID block programmed.     
 
 
In its simplest form, the PID block is used as a single block with no input contacts and 
surrounded by only two SCP blocks.  The SCP block is configured to retrieve a numerical value 
from the analog input channel, linearly scale the input and move the resultant value to the PID 
block.  In the figure below, the input is a 4-20 mA signal from a flow transmitter.  The output is a 
4-20 mA signal to a variable flow valve. 
 
The PID block may be used individually, or in coordination with other PID blocks or logic to 
provide control of a valve or other control device.  The PID block may be used in a course in 
automatic control to provide a much needed lab experience involving PID control. 
 

 
 

SCP – Scale with 
Parameters 
Input 
Input Min 
Input Max 
Scaled Min

SCP – Scale with 
Parameters 
Input 
Input Min 
Input Max 
Scaled Min

PID 
Control Block 
Process Variable 
Control Variable 
Control Block Length 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Proceedings of the 2007 American Society for Engineering Education Annual Conference &Exposition 
Copyright © 2007, American Society for Engineering Education 

 



ASCII Read/Write 
 
Many devices such as bar code readers, weigh scales and RFID readers may use the ASCII 
read/write command blocks to communicate to the PLC.  To test the read/write block, a 
computer is set up as a simple terminal for text transmission instead of a bar code reader or other 
serial communication device.  The figure below demonstrates the PLC used as a communication 
device that can read or write an ASCII block to a second device. 
 
 
 
 

 
 
 
 
 
The PLC may be used to write simple or complex protocols involving communications between 
computers as well and may be used to introduce the programming of protocols to the student.   
 

Proceedings of the 2007 American Society for Engineering Education Annual Conference &Exposition 
Copyright © 2007, American Society for Engineering Education 

 



Handling Faults and Interrupts 
 
To recover from a fault or to handle an interrupt requires the same type of command from the 
PLC.  A lab experience to cause a fault and then recover from the fault is used to teach handling 
of interrupts. 
 
The lab purposefully causes a fault.  The subsequent interrupt may be used to demonstrate the 
response of the CPU to an interrupt.  The modern cpu handles interrupts through storage of data  
on the stack.  If too many interrupts occur too quickly, the stack overflows and an error occurs.  
With the PLC, the stack is not used but data from the Status file is saved.   
 
Data saved includes: 
 
 

- S:0    Arithmetic flags 
- S:13 and S:14  Math register 
- S:24   Index register 

 
 
(S:x data represents data stored in the Status Table in 16 bit signed integer format.) 
 
 
The sequence of events is as follows: 
 
 
 
 
 

Main Line Program Interrupt occurs:   Interrupt ends,   
Executes through Prior values of:   Main Line Program  
Rung 28. S:0, S:13, 14, S:24 saved begins execution at 
Program uses:  Interrupt Program Begins rung 29 with restored  
S:0,    New values of:   values of: 
S:13, 14  S:0, S:13, 14, S:24 used S:0, S:13,14, S:24 
S:24   Interrupt Program Ends  

 
   

Proceedings of the 2007 American Society for Engineering Education Annual Conference &Exposition 
Copyright © 2007, American Society for Engineering Education 

 



Stepper and Servo Motor Configuration 
 
The excitement of actually moving a device to an exact location is the object of this lab. Stepper 
motors may be configured manually using the data table of the stepper controller card to 
manually enter configuration and control information and move the stepper. The lab is enhanced 
when the HMI (Human Machine Interface) is programmed to enter the same information. 
  
After the stepper motor is configured successfully, the servo-motor may be assumed to be as 
easy to configure and run as the stepper motor.  However, its configuration and control prove to 
not be as simple. With devices such as the servo, the student is pointed to the sample program of 
the appendix of the servo control user manual as a starting point to successfully control the 
device. 
 

 
 
 
Configuration Word Layout: 
 
  O:2.0  Config Output Word 0 
  O:2.1  Config Output Word 1 
  O:2.2  Config Output Word 2 
  O:2.3  Config Output Word 3 
 
  I:2.0  Config Input Word 0  
  I:2.1  Config Input Word 1 
  I:2.2  Config Input Word 2 
  I:2.3  Config Input Word 3 

Proceedings of the 2007 American Society for Engineering Education Annual Conference &Exposition 
Copyright © 2007, American Society for Engineering Education 

 



DeviceNet Configuration 
 
Data highways for sharing of data are a part of the modern PLC. DeviceNet is a simple I/O 
network that works well with most processors.  Configuration of the network and using the 
network to control a simple PLC program is required[4].   DeviceNet uses the same chip-set as 
CanBUS.  A network configured using DeviceNet is shown in the figure below. 
 
 

  
 
 
 
 
Networks and Protocols 
 
It has become increasingly necessary for the PLC student to have a working knowledge of 
networks and network protocols.  Setting up a network of PLCs and accompanying HMI 
computers should be the responsibility of the electrical engineer or engineering technologist.  
The establishment of a stable network is critical to the success of a project and should be 
addressed in a course such as this. Network security, while not necessarily a part of this course, 
should be addressed in the curriculum at some point. 
 
 
 

Proceedings of the 2007 American Society for Engineering Education Annual Conference &Exposition 
Copyright © 2007, American Society for Engineering Education 

 



Conclusion 
 
 
It was stated that a course in Programmable Controller Applications needs to concentrate the 
student's interests toward finding good employment.  The course or courses should also aid and 
strengthen the theoretical concepts taught in other coursework.  Several lab experiences were 
given to help develop the student in other areas of study as well as in preparation for the 
manufacturing world. 
 
The lab experiences parallel those encountered in other areas of study and may be useful to 
enhance lab experiences found elsewhere. 
 
 
 
 
 
Bibliography: 
 
[1]  SLC Modular Processors, User Manual, Allen-Bradley 
 
[2]  SLC 500 Instruction Set Reference Manual, Allen-Bradley 
 
[3]  Logix5000 Quick Start Manual, Allen-Bradley 
 
[4]  DeviceNet Starter Kit Installation Manual, Alley-Bradley 
 
 
 
 
 
 
 
 
 
 
Biography: 
Wm. Ted Evans is a professor of Engineering Technology at the University of Toledo.  His 
educational background includes a BSEE in 1971 and MSEE in 1975.  He receive the PhD in 
Industrial Engineering in May 2005. Mr. Evans was also a practicing Controls Electrical 
Engineer in industry for 15 years. 

Proceedings of the 2007 American Society for Engineering Education Annual Conference &Exposition 
Copyright © 2007, American Society for Engineering Education 

 


	An alternate exercise requires the student to subtract N7:1 from N7:0 and place results in N7:2.  Another exercise would require the student to multiply N7:0 by N7:1 and place results in N7:2, N7:3.  Other exercises create the equivalent of an up counter, down counter, comparator or a combination of one or more of these.
	While the first or right-most bit does not require a carry-in bit, all bits to the left require addition of the carry-in bit to determine the output and carry.
	A Full Adder Design with Ladder Logic:
	Three Pumps:


