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Abstract: Excessive sampling images pose the risk of radiation poisoning for patients in image 
guided radiation treatment (IGRT). Thus, treatment methods based on external marker position 
(which is radiation free for sampling images) have been developed. The challenge is how to 
correlate external marker motion with internal tumor motion. Our research is trying to address 
this issue through retrospective analysis and knowledge discovery for the correlation between the 
external marker and internal tumor positions acquired simultaneously during treatment. A new 
dynamic procedure has been proposed for data processing. The normalized data was 
disseminated into piecewise line segments. Statistical analysis and correlation discovery, such as 
aggregates and histogram, were calculated based on the piecewise linear representation. The 
analytical results show that there is strong correlation between external and internal tumor 
motion. The correlation and analytical results presented here will be important input for 
prediction of internal tumor motion based on external marker position.   
 
1. Introduction 
 
With advanced technologies for high-throughput data production, medical information has been 
increasing exponentially in recent years. Managing, analyzing and simulating complex medical 
information is of great significance for medical decision-making and better patient care. This 
paper introduces our research effort in applying advanced statistical analysis over dynamic time 
series data from real-time image guided radiation treatment.  
 
Radiation therapy is a treatment modality directed toward local control of cancer. The primary 
goal of radiation therapy is to ensure precise radiation delivery to kill tumor cells and minimize 
radiation dose to surrounding healthy tissues and critical structures. However, the quality of 
radiation treatment is degraded by respiratory motion [1, 13, 14]. As patients inhale and exhale, 
tumors in lungs and abdominal regions move correspondingly.  Direct localization of the tumor 
mass in real-time is often difficult. Various surrogates are then used to derive the tumor position 
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during the treatment, including internal and external surrogates [1]. Internal surrogates are 
implanted fiducial markers inside or near the tumor. The internal tumor motion can be derived by 
locating the internal surrogates using fluoroscopic tracking. The precision is satisfactory. 
However, fluoroscopic tracking requires radiation dose for imaging. Thus, imaging dose is a 
primary concern for internal surrogates. External surrogates, such as markers, are placed on the 
surface of the patient’s abdomen.  External markers are radiation free. The weakness is the 
uncertainty in correlation between external surrogates and internal tumor position.  
 
The aim of this research project is to find meaningful moving correlation between the internal 
tumor motion with external marker motion of cancer patients under the condition of free 
breathing during treatment. This correlation analysis can be used for further research of motion 
characterization and motion prediction, which are important both for pre-treatment planning and 
for online monitoring.  
 
The rest of the paper will be organized as follows: Section 2 introduces the related work in the 
field. Section 3 presents the methods. The results are presented in section 4. The last section 
provides a summary of the findings and directions of future work. 
 
2. Related Work 
 
Tumor respiratory motion is a relatively new research field. Several models have been proposed 
to model tumor respiratory motion. Lujan et al. and Seppenwoolde et al. describe a method of 
modeling a breathing pattern with a modified cosine function [8, 15]. Neicu et al. have described 
how to capture a more detailed waveform model using a concept called the Average Tumor 
Trajectory [6]. However, the cosine model does not work well when the inhale and exhale phases 
are asymmetrical. Both cosine and ATT models are offline algorithms and need multiple scans 
over raw data which can not be used for real-time prediction. Wu et al has developed a finite 
state model to decompose the incoming tumor motion signal into line segments during real-time 
image guided radiation treatment [12]. 
 
The correlation between internal tumor motion and external marker motion has not yet been 
adequately validated with data directly correlating tumor and diaphragm/chest wall motion, and 
there are known instances where it will lead to errors [2, 4, 5, 7, 9]. Even if a correlation between 
tumor motion and diaphragm/chest wall motion is observed for some patients prior to treatment, 
we cannot assume that the same relationship will hold throughout the treatment [7, 10]. Dynamic 
correlations are needed during real-time treatment which is addressed partially in this project. 
 
3. Methods:  
 
In this section, we present the methods we used for data processing, including preprocessing, 
scaling, normalization and segmentation, for statistical analysis. This was performed through 
several phases, which are described in detail below. 
 
3.1 Dynamic preprocessing  
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Challenges to preprocessing include missing values and irregular motion.  Missing data typically 
occur when there is an issue with the signal.  Irregular motion is a result of irregularity in the 
breathing cycle as noted by Wu et al [11, 12].  In this study, fifty-one treatment days and 139 
beams, reflective of nine patients, were initially evaluated.  Missing time values were identified 
and replaced following the time series pattern.  Missing internal and external coordinate values 
were estimated using linear interpolation.  Outlier values were removed via nearest neighbor 
averaging.  The method used was to take the value prior to and post the outlier, average the two 
numbers and substitute the average for the outlier value [3]. 
 
All data in Figures 1(a)-1(f) are tumor motion from treatment of the same patient on the same 
day, either raw motion or processed motion.  Figure 1(a) depicts the raw internal motion data 
with missing values as demonstrated by the breaks in the lines.  Figure 1(b) reflects the same 
data as in Figure 1(a), but after the completion of linear interpolation and nearest-neighbor 
averaging for outlier removal.  The line segments are continuous after the preprocessing.  
Corresponding external motion data were also preprocessed and interpolated in the same way, 
but not depicted in these figures. 
 
3.2 Normalization  
 
Figure 1(c) depicts the internal tumor- and external-motion data after preprocessing. The figure 
clearly demonstrates the disparity in scales between the internal and external signals obtained via 
different imaging modalities. A normalization process must be performed before any data 
analysis can be done. In order to address the scaling difference, a normalization process was 
initiated after the missing values were interpolated. Internal and external coordinates were scaled 
using the following min max normalization formula:   

v’=v-minA(new_maxA-new_minA) + new_minA  
where  minA = minimum value of A, maxA =  maximum value of A. Figure 1(d) demonstrated both 
the internal and external marker motion after normalization, where  new_maxA  = 20 and 
new_minA = 0 [3]. 
 
3.3 Post-normalization processing 
 
To ensure that the data were contained within the same plane, the inverse of the normalized 
external coordinate plus an integer value was calculated for amplitude analysis purposes.  The 
normalized internal and external coordinates were graphed and visually inspected.  An 
approximation of range variance was calculated.  The integer added to the normalized external 
coordinate was based on this approximation.  Graphing and visual inspection were completed a 
second time.  Adjustments to the integer value were made until data were contained in the same 
plane; this process was repeated as many times as necessary to achieve the desired results.  
 
After processing and normalizing the data, both the internal tumor motion and external marker 
motion were decomposed into piecewise line segments based on an online implementation of a 
finite state model [12]. Each line segment represents one breathing state, such as exhale (EX), 
inhale (IN) and end of exhale (EOE). Pre-segmented and segmented data were graphed and 
visually analyzed.  Figure 1(e) represents the data after the post-normalization process and the 
data now are contained in the same plane.  Figure 1(f) represents the data after segmentation.  
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Figure 1: Motion data processing. (a) raw internal tumor motion data, (b) internal tumor motion 
data after interpolation, (c) internal and external motion data before scaling, (d) internal and 
external motion data after normalization, (e) internal and external motion data after post-
normalization processing, and (f) internal and external motion data after segmentation.  
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3.5 Statistical analysis  
 
There are many motion properties that can be used to discover correlation. Some properties are 
independent from each other, such as amplitude and frequency. Others are interrelated, such as 
amplitude versus starting position or duration versus starting time. We evaluated different 
motion parameters that we propose to use for correlation.   
 
Twenty-eight post-segmented data files that correspond to several session beams for each patient 
treatment day were individually analyzed. Statistical analysis was performed on the daily motion 
data of each patient. Aggregated information, such as the minimum, maximum, and average of a 
motion fraction, or the day or the whole treatment course of the patient, was computed and 
compared.  
 
In this paper, we summarize the findings of starting time difference and starting position 
difference between the internal and external motion coordinates. Starting time difference is 
defined as:   

δt = t (external) – t (internal)  
where t (external) and t (internal) are the time instances of the beginning point of a line segment 
for the external and internal motion, respectively. Starting position difference is defined as:  

δy = y (external) – y (internal). 
where y (external) and y (internal) are the positions of the beginning point of a line segment for 
the external and internal motion, respectively. 
 
4. Results and discussion  
 
Although there are many challenges related to processing external and internal motion 
coordinates for lung tumor patients, the unique and dynamic normalization process demonstrated 
has proven effective in detecting common patterns among this set of patients. Data were 
aggregated for each patient treatment day and included the minimum, maximum and average for 
the full breathing cycle as well as each state.  Histograms reflecting the difference between the 
internal and external coordinates for average starting time and position were developed.   
 
A predominant pattern was identified for both the starting time and position.  In 64% of the 
patients, the foremost pattern:  δt(EOE) < δt(EX) < δt(IN) was seen for starting time difference.  
For starting position difference, the main pattern:  δy (EOE) < δy (IN) < δy (EX) was seen 71% 
of the time.  In addition the combination of these patterns was identified 54% of the time.  Figure 
2(a) and 2(b) illustrate the primary difference patterns for starting time and position.   
 
4.1 Starting time difference  
 
Other characteristics of the foremost starting difference pattern δt(EOE) < δt(EX) < δt(IN)  
include:   δt(EOE) is negative at approximately 217 ms and δt(EX) is negative at approximately 
69 ms.  The δt(IN) can be negative or positive with values ranging from 699 to -577 ms in 96% 
of the cases evaluated.  The cycle starting time difference was negative in 96% of all treatment 
days.   
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Figure 2: Statistical analytical results. (a) the histogram of starting time difference of one 
patient, (b) the histogram of starting position difference of the same patient.  

 
This predominant pattern reflects that the EOE duration for the external motion is greater than 
that of the internal motion.  The EX and IN duration for the external motion is less than that of 
the internal motion.   
 
The second most frequently observed starting difference pattern was:  δt(EX) ~ δt(EOE) ~ δt(IN) 
This was illustrated in 11% of the patient treatment days and was seen in one patient.  It reflects 
minimal movement for all states.  This patient also demonstrated a positive starting difference. 
 
The third pattern seen in seven percent of the patient treatment days was:  δt(EOE) < δt(EX) ~ 
δt(IN).  In comparison to the predominant one, there is minimal movement during the inhale 
phase for this particular pattern.   
   
4.2 Starting position difference 
 
As with starting time difference, there were three patterns demonstrated for starting position 
difference as well. In the predominant pattern (δy (EOE) < δy (IN) < δy (EX)) noted:  (EOE) 
was negative at approximately -13 ms in 71% of all treatment days.  The δy (IN) and δy (EX) 
were positive or negative values with ranges between -29 ms to 72 ms and -152 ms to 109 ms, 
respectively.  The average movement for each of these states was:  6 ms for IN and 36ms for EX.   
 
This primary pattern reflects that the EOE amplitude for the external motion is less than that of 
the internal motion.  Although the ranges for EX and IN starting position values were varied, the 
pattern demonstrated that the external motion is greater than the internal motion.   
    
The second most established pattern displayed was:  δy (IN) < δy (EOE) < δy (EX).  This was 
reflected in 11% of the patients, but not in just one patient as the second most frequent starting 
time difference pattern was.  In this pattern, the IN and EOE states are in reverse order in regard 
to difference in movement as compared to the main pattern.   
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The third pattern exhibited was:  δy (EX) < δy (EOE) < δy (IN).  This pattern was prevalent in 
seven percent of the treatment days and seen in more than one patient.  In this case, the EX state 
movement was less than the other two states.   
 
5. Conclusion and future work 
 
Predominant correlation patterns between external marker motion and internal tumor motion 
were identified for the starting time and position utilizing preprocessing, normalization, post-
processing and piecewise linear segmentation.  The statistical results show that there are strong 
correlations. The primary pattern for starting time difference was δt(EOE) < δt(EX) < δt(IN).  
For starting position difference, it was δy (EOE) < δy (IN) < δy (EX).  These patterns were seen 
64% and 71% of the time, respectively.  In addition a combination of these patterns was 
identified in 54% of the cases. 
 
These results are promising, but further detailed correlation discovery is required.  Analysis of 
amplitude and cycle duration differences is needed to identify if common patterns exist among 
these factors as well.  In addition, utilizing the current work as a basis for prediction of tumor or 
external motion will be investigated.         
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