
American Society for Engineering Education
March 31-April 1, 2006 – Indiana University Purdue University Fort Wayne (IPFW)

2006 Illinois-Indiana and North Central Joint Section Conference

TEACHING COMPUTER ARCHITECTURE
THROUGH DESIGN PRACTICE

Guoping Wang

Indiana University Purdue University Fort Wayne, Indiana; Email:wang@engr.ipfw.edu

1. INTRODUCTION

Computer Architecture is a common upper- level engineering course that is offered at universities
to Computer Science and Computer Engineering students throughout the world. Most of the
available educational approaches vary in how they handle computer system and run the
microprocessor simulations on the computers (Barua, 2001; Djordjevic, et al., 2005; Gaeke,
2005; Ibbett and Mallet, 2003; Larus, 2005; Vollmar and Sanderson, 2005; Yehezkel, et al.,
2003). For example, the popular MIPS simulator, SPIM (Larus, 2005) is a MIPS microprocessor
simulator developed at the University of Wisconsin for undergraduate teaching in computer
architecture. It reads and executes MIPS assembly language programs written for this processor
and it also provides a simple debugger and minimal set of operating system services, but it does
not execute binary (compiled) programs. SPIM simulator implements both a simple, terminal-
style interface and a window interface. VMPIS (Gaeke, 2005) simulator simulates a MIPS
R3000 RISC CPU core and it is an open-source project started and supported by Brian R. Gaeke
(Gaeke, 2005) and distributed under the GNU General Public. VMIPS allows developers to write
and test code for a MIPS CPU. VMIPS hopes to be a teaching environment for computer
architecture courses where students can write software for the MIPS RISC instruction set. It also
hopes to be a development environment for people writing extensions to the simulator, like
adding more devices or changing CPU behavior. These MIPS simulator together with other
commercial and non-commercial software are adopted in the teaching activities of Computer
Architecture.

However, in these approaches, students are only exposed to the instruction set of the computer
architecture and the students don’t have the chance to build an original processor from scratch.
Through the simulation, students understand the computer architecture intricacies through the
use of assemblers, architecture simulators, compilers, while it may be enough to Computer
Science students, for Computer Engineering students, they require more details about computer
architecture than a black box approach can provide. On the other hand, a major problem in
teaching computer architecture course is how to assist students make the leap that connects their
theory of principles and theories with practical experience. The best way to learn about computer
architecture is to design and build one. Unfortunately, computers have become so sophisticated
the designing a full-scale CPU and building them in hardware in one semester is not feasible.

In the teaching of Computer Architecture at Indiana University Purdue University Fort Wayne
(IPFW), a simplified computer system, which is a modified version of (Taylor 2003), is
introduced that lets the students design, build and test it on FPGA. Due to the complexity of the

American Society for Engineering Education
March 31-April 1, 2006 – Indiana University Purdue University Fort Wayne (IPFW)

2006 Illinois-Indiana and North Central Joint Section Conference

system, schematic approach is not practical. Thus, VHDL hardware description language is used
through the course. This computer system has a ALU, some registers, and an output interface to
the XSA-100 FPGA board. Students will use Xilinx ISE Design and Implementation tools,
together with Mentor Graphics Modelsim logic simulator and XESS XSA-100 FPGA board to
design, simulate and verify the functionality of this CPU unit. Three projects are assigned to the
students. Project 1 requires the students to design and simulate two components of the CPU, the
register stacks and the ALU unit. In project 2, students will design, simulate and verify the
simplified CPU unit with a datapath, instruction encoder, instruction ROM, register stacks and
ALU on the FPGA board. A calculator which uses the simplified CPU structure is also
implemented in this project. Project 3 involves with the further applications of the CPU unit
which includes the arithmetic operation of signed binary numbers, a complier application from C
code to Assembly language and its implementation on the CPU unit. Through this design process,
the compiling theory, the machine language, the internal CPU architecture and the data path will
be introduced to help the students better understand the computer architecture.

The rest of this paper is organized as follows: Section 2 gives a brief course overview of the
current Computer Engineering curriculum in computer hardware area. Section 3 describes the
teaching background, equipment and facilities of Computer Architecture teaching activities in
IPFW. In Section 4, the teaching activities in details are presented. Section 5 concludes the
paper.

2. COURSE OVERVIEW

In the area of computer hardware courses for Computer Engineering at IPFW, a four-course
sequence is followed which consists of ECE 270 – Introduction to Digital Systems Design, ECE
357 – Introduction to VHDL, ECE 362—Microprocessor Systems and Interfacing and ECE
495A – Computer Design and Prototype. ECE 270 covers the basics of combinational logic
circuit analysis and design, sequential logic circuit analysis and design, finite state machine,
Karnaugh map., etc. It also has a very important laboratory session which exposes students the
design and practice of the digital systems. ECE 357 introduces digital system design using
VHDL. Topics covered include VHDL concurrent and sequential statements, signals and
variables, state machine design, VHDL synthesis, simulation. Hand-on projects on FPGA board
are assigned to the students. ECE 362 covers the topic of 80x86 series microprocessor. The
assembly language, computer interfacing are introduced. The MIPS architecture, datapath,
pipeline, memory hierarchy and I/O basics are covered in ECE 495A. This four-course sequence
gives the students a systematic knowledge of the computer system, from the simple Boolean
algebra, logic gates to the computer architecture.

3. BACKGROUND

In ECE 495A at IPFW, the most popular textbook for computer architecture by Patterson and
Hennessy (Patterson and Hennessy, 2005) was adopted in the teaching. MIPS processor
architecture is introduced. Three technological advances, 1) powerful EDA tools, 2) fast
hardware prototyping facilities (FPGA) and 3) hardware description language, enable teaching
this course through the effective implementation of a simplified RISC processor. Due to the
complexity of the processor, schematic approach is not practical. VHDL hardware description

American Society for Engineering Education
March 31-April 1, 2006 – Indiana University Purdue University Fort Wayne (IPFW)

2006 Illinois-Indiana and North Central Joint Section Conference

language is used to design and capture the processor architecture. Xilinx ISE and Mentor
Graphics Modelsim logic simulator are used to synthesize, simulate and verify the design. Then
the XSA-100 FPGA board from XESS company is used to download the design and test it. The
XSA-100 FPGA board has a 100,000-gate Spartan2 FPGA chip on board with interface
peripherals such as LEDs, push buttons, DIP switches, etc. It also combines a 16M Bytes DRAM
and 256KByte Flash to give you the resources for building a complete, soft-core RISC processor
system. Figure 1 shows a picture of the XSA-100 FPGA board.

Figure 1. XESS XSA-100 FPGA Board

4. EDUCATION ACTIVITIES

In this class students learn and understand the computer architecture through the design a single-
cycle processor with a RISC instruction set, datapath, ALU unit and an interface to the FPGA
board. Three projects are assigned to the students and each one takes about four weeks.

4.1 Project 1: The design of Register Group and ALU unit.

In this project, students will implement and simulate some components of a processor. All the
components to be designed in this project are building blocks rather than complete circuits.
Therefore, it will not be necessary to test them on the FPGA board. Only the simulation results
are required.

Ø Project 1 Part 1: Register Group

This RISC processor will have eight general-purpose, 8-bit wide registers which will be
contained in a register file as shown in Figure 2.

American Society for Engineering Education
March 31-April 1, 2006 – Indiana University Purdue University Fort Wayne (IPFW)

2006 Illinois-Indiana and North Central Joint Section Conference

Eight 8-bit

Registers

CLK

RST

WE

IN

SELWR[2:0]

SELA[2:0]

SELB[2:0]

OUT1[7:0]

OUT2[7:0]

Figure 2. Register File for the Processor

The register file has one data input and two data outputs. Control signals are used to select which
register (if any) the data on the input lines will be written into (i.e. destination register) and
which registers will be displayed at the outputs (i.e. operands).

Students will design the register file using VHDL according to the following specification,
simulate their design using Modelsim simulator.

• Registers are 8 bit wide, and the register file contains eight registers called R0
through R7.

• The register file has two 8 bit data outputs labeled OUT1 and OUT2 and one 8 bit
data input, IN.

• Data is written into the register on the rising edge of the clock.
• The control input SELWR[2..0] selects which register will be written; e.g. if

SELWR[2..0]=5 then the data at the input is written into the register R5 on the
next rising edge while the content of all other registers remains unchanged (Hint: use
the decoder to select the register).

• The control input WE is a global write enable signal. If this signal is low, the content
of all registers remain unchanged regardless of the value at the SELWE[2..0] input.
Therefore, WE must be high to write into the register (Hint: consider using the
‘enable’ input on the decoder macro).

• The control signals SELA[2..0] and SELB[2..0] select which registers will pass
their content to outputs OUT1 and OUT2 respectively.

• The register file is clocked by a common clock input signal and can be
asynchronously cleared with a common reset signal.

A sample of the simulation waveform for this register file is shown as Figure 3.

American Society for Engineering Education
March 31-April 1, 2006 – Indiana University Purdue University Fort Wayne (IPFW)

2006 Illinois-Indiana and North Central Joint Section Conference

Figure 3. Register File Simulation Waveform

Ø Project 1 Part 2: ALU Design

In this part, students are asked to design an 8 bit ALU that has two 8 bit inputs IN1 and IN2 and
an 8 bit output ALU_OUT as shown in Figure 4. The circuit should also have a 3 bit input SEL
which is used to select the operation and a single output ZERO which is high whenever the
output of the ALU is all zeros. Based on the settings of the SEL input, the ALU should perform
one of the following operations:

SEL Outputs
000 IN1 and IN2
001 IN1 or IN2
010 IN1 xor IN2
011 not IN1
100 IN1+IN2
101 IN1-IN2
110 IN1<<1
111 IN1>>1

ALU

IN1(7...0)

IN2(7...0)

SEL(2...0)

ALU_OUT(7...0)

ZERO

Figure 4. ALU Diagram

Students are also required to simulate the ALU design using Modelsim simulator. A good test
vector should be composed of all eight ALU functions and some examples to test the ZERO
signal output. Figure 5 shows such a sample of the ALU simulation waveform.

American Society for Engineering Education
March 31-April 1, 2006 – Indiana University Purdue University Fort Wayne (IPFW)

2006 Illinois-Indiana and North Central Joint Section Conference

Figure 5. ALU Simulation Waveform

4.2 Project 2: The design of A Simple RISC Processor

In this project, students will design a simple RISC processor which is similar to MIPS but a
simplified version.

Ø The Instruction Set

This microprocessor executes 16 different instructions. Each instruction is 21 bits long and
consists of the following five fields: a 4-bit opcode, two 3 bit fields rs and rt that denote operand
registers, one 3-bit field rd that denotes the destination register and an 8 bit immediate field.
Note that although all of the instructions share the same layout, most instructions do not use all
of the available fields. Figure 6 shows such an instruction set layout.

Opcode (4) rs (3) rt (3) rd (3) Immediate (8)

Figure 6. Instruction Set Layout

 The instructions that the processor will execute are given below:

1. add rs rt rd: (opcode = 0) Add the contents of the two registers denoted by the rs and rt
fields and store the result in the register indicated in the rd field

2. sub rs rt rd: (opcode = 1) Subtract the contents of the register denoted by the rt field
from the register denoted by the rs field and store the result in the register indicated in the
rd field

3. and rs rt rd: (opcode = 2) And the contents of the two registers denoted by the rs and rt
fields and store the result in the register indicated in the rd field

4. or rs rt rd: (opcode = 3) Or the contents of the two registers denoted by the rs and rt
fields and store the result in the register indicated in the rd field

5. xor rs rt rd: (opcode = 4) Xor the contents of the two registers denoted by the rs and rt
fields and store the result in the register indicated in the rd field

6. not rs rd: (opcode = 5) Invert the contents of the register denoted by the rs field and store
the result in the register indicated in the rd field

7. shl rs rd: (opcode=6) Shift the contents of the register denoted by the rs field left one
position (filling the vacated slot on the right with a zero) and store the result in the
register indicated in the rd field

American Society for Engineering Education
March 31-April 1, 2006 – Indiana University Purdue University Fort Wayne (IPFW)

2006 Illinois-Indiana and North Central Joint Section Conference

8. shr rs rd: (opcode=7) Shift the contents of the register denoted by the rs field right one
position (filling the vacated slot on the left with a zero) and store the result in the register
indicated in the rd field

9. ld rd i: (opcode=8) Load the register denoted by the rd field with the contents of the
immediate field of the instruction

10. spc rd: (opcode=9) Store the current contents of the 8 bit program counter in the register
indicated in the rd field

11. beq rs rt i: (opcode=10) If the contents of the two registers denoted by the rs and rt fields
are equal then increment the program counter with the value in the immediate field

12. ji i: (opcode=11) Reset the program counter to the value found in the immediate field
13. jr rs : (opcode=12) Reset the program counter to the value stored in the register denoted

by the rs field
14. ldsw rd: (opcode = 13) Load the register denoted by the rd field with the current value on

the 8 slide switches
15. ldbut rd: (opcode = 14) Load the lower 4 bits of the register denoted by the rd field with

the current values on the 4 push button switches
16. wleds rs : (opcode = 15) Write the contents of the register denoted by the rs field into

another 8-bit register connected to the 8 LEDs

The instruction set 16 wleds rs interfaces the microprocessor with the FPGA board and it can
write out the register value to the LED bar.

Register
Group

ALU

FPGA
LED

Instruction
ROM

Control
Unit

PC
Counter

Inputs from
FPGA Board

Figure 7. The Simplified Microprocessor Diagram

Figure 7 shows the logic diagram for this simplified microprocessor.

A control unit generates all the control signals to PC register, ALU unit, register group, LED
output, etc depending on the instruction from the ROM. In addition to the control signals which

American Society for Engineering Education
March 31-April 1, 2006 – Indiana University Purdue University Fort Wayne (IPFW)

2006 Illinois-Indiana and North Central Joint Section Conference

are internally generated by the control unit, two external signals must be provided: clock and
reset. The clock signal must be fed to all registers as in every sequential circuit. The reset signal
is used to ensure that on power up, the processor starts the execution of the program from some
predefined address, which will be zero on this processor.

Students are required to implement, synthesize, simulate and verify this microprocessor on the
FPGA board.

Figure 8 shows a screenshot of the simulation waveform of a sample instruction code for this
microprocessor.

Figure 8. Simulation Waveform of the Microprocessor

After this microprocessor VHDL module has been verified and tested on FPGA boards, students
are required to implement a calculator using the assembly program for this processor. The
program should work as follows. Whenever Push Button #1 on the FPGA board is pressed the
circuit should load the value from the slide switches into register 1. Whenever Push button #2 is
pressed the circuit should load the value from the slide switches into register 2 then add this
value to the contents of register #1 and display the 8 bit result on the LEDs.

4.3 Project 3: The Modified RISC Processor

In this project, the design of the single cycle microprocessor in Project 2 is modified to add
another instruction set and students are also needed to manually convert a simple C code into the
assembly language of this processor.

Ø Project 3 Part 1: Microprocessor Instruction Modified

It is often useful to be able to increment a register value with an immediate value. The
microprocessor from Project 2 is modified to add the following instruction replacing the sub
instruction. addi rs rd i: (opcode = 1). Add the contents of the register denoted by the rs field to
the contents of the immediate field and store the result in the register indicated in the rd field.
Please explain how a 2’s complement subtraction using the available instructions in the modified
processor can be carried out. Illustrate the answer with one or more assembly code fragments.

Ø Project 3 Part 2: From C Code to Assembly Language

In this part, given the following piece of C-code act as a compiler and produce the corresponding
assembly code for the processor. Use the new addi instruction at least once.

int i;
unsigned char l0;

American Society for Engineering Education
March 31-April 1, 2006 – Indiana University Purdue University Fort Wayne (IPFW)

2006 Illinois-Indiana and North Central Joint Section Conference

while (1) {
l0 = 0;
for (i=0; i <= 3; i++) {
l0 = l0 >> 2;
/* Display l0 on the LEDs here */
}
for (i=0; i <=3; i++) {
l0 = l0 << 2;
/* Display l0 on the LEDs here */
}
l0 = 0;
for (i=0; i <= 3; i++) {
l0 = l0 >> 1;
/* Display l0 on the LEDs here */
}
for (i=0; i <=3; i++) {
l0 = l0 << 1;
/* Display l0 on the LEDs here */
}
}

Students should turn in their assembly code. The compiler theory can be further understood
through this procedure.

5. SUMMARY

The teaching experience of Computer Architecture through hands-on design practices at IPFW is
presented in this paper. Due to the complexity of modern RISC microprocessor, the design of a
full-scale unit is not feasible in the education activities, thus a simplified model which is similar
to the one mentioned in the textbook is introduced. Students need to design, verify and test their
design and write some simple application program using it through the learning procedure, thus
it will help them to further understand the theories and principles of the computer organiza tion.
In the future teaching activities, a processor simulator combined the proposed design practices
will be introduced to further facilitate the education process.

REFERENCES

Barua, S. (2001). “An interactive multimedia system on computer architecture, organization, and
design”, IEEE Transactions on Education, 44, (1), 41-46.

 Djordjevic, J., Nikolic, B., and Milenkovic, A.(2005). “Flexible web-based educational system
for teaching computer architecture and organization,” IEEE Transactions on Education,
48, (2), 264-273.

Gaeke, B. R. (2005). “VMIPS Project”, http://www.dgate.org/vmips/
Ibbett, R., and Mallet, F. (2003). “Computer architecture simulation applets for use in teaching,”

FIE2003, 33rd Annual Frontiers in Education, 2, F1C-20-5.

American Society for Engineering Education
March 31-April 1, 2006 – Indiana University Purdue University Fort Wayne (IPFW)

2006 Illinois-Indiana and North Central Joint Section Conference

Larus, J. (2005). “SPIM A MIPS32 Simulator,” http://www.cs.wisc.edu/~larus/spim.html
Patterson, D. A., and Hennessy, J. L. (2005). “Computer Organization and Design: The

Hardware/Software Interface,” 3rd Edition, Morgan Kaufmann, San Francisco, CA.
Taylor, C. J., (2003), “CSE 371 Digital Systems Organization and Design,”

http://www.sea.upenn.edu/~cse371
Vollmar, K., and Sanderson, D.P. (2005). “A MIPS Assembly Language Simulator Designed in

Education,” Consortium for Computing Sciences in Colleges: Midwest Conference.
Yehezkel, C., Eliahu, M., and Ronen, M.(2003). “Learning computer organization and assembly

language with the EasyCPU visual environment,” The 3rd IEEE International Conference
on Advanced Learning Technologies, 491-491.

