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ABSTRACT 

 
Rigorous evaluation of the functionality and originality of student designs in upper level 
digital system design courses is challenging at best. Courses such as the ASIC (Application 
Specific Integrated Circuit) Design Laboratory and Computer Design and Prototyping 
Laboratory require students to create simulations and hardware realizations of systems that 
have complex functional and performance requirements. Student demonstrations are usually 
inadequate to verify much more than a minimal subset of required functionality. Furthermore, 
it can be time consuming to verify in a simulation or FPGA prototype based demonstration 
that the design being demonstrated is in fact the student’s design. In the ASIC design 
Laboratory and the Computer design and prototyping Laboratory, several automated processes 
have been developed to verify the correct functionality and originality of student designs.  In 
this paper, examples are presented of design requirements to be verified, the means developed 
to evaluate the designs, and results of these evaluations.  
 

1. INTRODUCTION 
 
Thorough, timely, and consistent evaluation of student design work in any engineering domain 
is very challenging particularly as the design complexity increases. In the ASIC and computer 
architecture design arena, this is especially true because of the large number of subsystems and 
individual components in those systems. It has been widely reported (Bergeron, 2003) that in 
industry that design verification requires on the order of 60% to 80% of total design effort for 
a new ASIC or processor design. Although most student designs are very small compared to 
the latest Intel ™ or AMD ™ processor, the complexity of student designs have grown 
immensely thanks to modern EDA (electronic design automation) systems which have made it 
possible to prepare complex designs in a short time. Consequently, it is not surprising that the 
verification of student designs for grading purposes has become similarly complex. When the 



ASIC design laboratory at Purdue University moved from schematic based design to language 
based circuit synthesis in 2001, we quickly realized that the evaluation process would have to 
be at least as automated as the design process itself. This led to the creation of the automated 
processes described in this paper. While the processes have evolved over time, most of what is 
presented here has been in use since 2001 for the ASIC design laboratory and since 2002 for 
the computer design and prototyping laboratory.  In the remainder of this paper, we describe 
the design process followed by student, identify milestones in the design process that are 
amenable to evaluation, describe the evaluation processes that were automated and present 
sample results and observations on the use of these processes. 
 
1.1 Student Design Flows 
 
Students in the ASIC design and Computer design and prototyping laboratories follow a 
design flow illustrated in Figure 1. It would be more accurate to refer to this as an 
implementation flow since  much of the creative work should occur prior to writing code for 
individual functional blocks, but “design flow” is the common industry terminology for the 
sequence of computer aided design processes required to take a design from concept to 
physical implementation. The design flow for each laboratory is nearly identical up until 
physical implementation. Please note that in practice the design flow involves considerable 
iteration and back-tracking, but these iterations usually occur within the framework illustrated 
by Figure 1. 
 
Students start with a conceptual block diagram of a system to be implemented. The block 
diagram must be refined to the point where each block can be represented by common digital 
logic structures such as state machines, registers, and non-sequential combinational logic 
networks. The design flow illustrated in Figure 1 begins at this point. Students capture detailed 
block diagram information using a graphical hardware description language (HDL) entry tool 
(HDL Design ™ from Mentor Graphics Corp.) and they write VHDL (VHSIC Hardware 
Description Language) code to describe the logic required in each block and to describe test 
benches for each block and the entire design. Circuit simulation (using Modelsim ™ from 
Mentor Graphics Corp.) can be performed on source code for portions and the entire design to 
verify functionality. The design is then converted into a circuit netlist by use of logic synthesis 
software (Synopsys Design Compiler or FPGA compiler). The circuit netlist is simulated using 
the previously created test benches to verify functionality. This is necessary since poorly 



written code can easily result in nonfunctional circuits even if the source code simulation 
behaved in the intended manner. On the next step, the ASIC and FPGA flows diverge. For an 
ASIC design, place and route software (SOC Encounter ™ from Cadence Design Systems) is 
used to produce an integrated circuit layout, check layout design rules, verify connectivity, and 
analyze the timing characteristics of the circuit. For an FPGA design, mapping software 
(Quartus II ™ from Altera Corp.) creates an FPGA configuration file based on the circuit 
netlist. Students can then download the FPGA configuration to a prototyping system to 
perform hardware tests.  
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Figure 1: Design Flow in ASIC and Computer Prototyping Laboratories 



1.2 Design Evaluation Requirements 
 
In the previous design flow, there are numerous opportunities for design verification, but we 
focus on three times indicated in Figure 1 at which overall functionality can be verified: 1. the 
source code has been completed and simulated by the students, 2. the circuit netlist has been 
synthesized and simulated, and 3. the physical design is complete. Functionality requirements 
are given to students from a black box perspective much as one might delegate a portion of a 
project to a design team or a contractor.  The required input and output signals are identified 
and functionality is given in terms of expected behavior of output signals in response to 
specified patterns on input signals. In the computer prototyping laboratory the target design is 
a microprocessor design, so an instruction set is also specified. In each laboratory, and at each 
stage of the design flow, it is necessary to verify that the design implements the complete 
specification. In addition, a way of quantifying the degree of compliance with the specification 
is necessary in order to assign a grade and give feedback to the student.  
 
Design originality requires an assessment of the extent to which a student or team design is the 
result of independent effort. In the event of plagiarism, evidence must be collected that is at 
least strong enough to convince a technically capable neutral party. It is better still if the 
students involved find the evidence undeniable as well. It is not possible to precisely define the 
boundary between plagiarism and originality, but one can identify conditions for which 
plagiarism is difficult to deny, especially for relatively complex designs. The most extreme 
case is verbatim copying of the entire source code for a design.  Almost as obvious, though 
more difficult to detect, are cases where the code structure is nearly identical, but the coding 
style and naming conventions are different.  
 

2. IMPLEMENTATION AND SAMPLE RESULTS 
 
In the ASIC, microprocessor, and embedded systems industries, delivery of systems that 
function as intended for an enormous range of input conditions require extensive verification 
of the design during all stages of the design process. Prior to physical implementation, this is 
accomplished by means of test benches, i.e., simulation code that generates input patterns to 
the design under test and checks the correctness of design outputs. While the verification needs 
for student designs are not quite as stringent, the use of test benches still provides a very 
efficient mechanism for verifying and re-verifying a design.  



 
2.1 Evaluation of Simulated Student Designs 
 
Given a clear design specification for a student design assignment, test benches can be written 
to verify simulated versions of student designs both in source and circuit netlist form.  In 
industry, specialized verification languages have evolved to facilitate extremely extensive and 
efficient functional verification. However, VHDL includes syntax to facilitate generation of 
test waveforms and automated inspection of simulated circuit outputs.  Rather than learn yet 
another language, both students and teaching assistants (TAs)  prepare test benches in VHDL.  
 
For grading purposes, each evaluation test bench is written to exercise a student design for a 
range of operating conditions (input patterns and timing) that can be inferred from the 
specification. Assertion statements in VHDL (Bhasker, 1995) are inserted liberally in the test 
bench to check for correct design behavior.  Consider the following VHDL code fragment 
taken from an evaluation test bench for a simplified IIC serial interface design: 
 
    MDATA <= "11110000"; 

    wait for 100 ns; 

 

    doStartCond(MSDA,MSCL); 

    wait for 1250 ns; 

 

    -- sending address 1111000 to slave with RW=0 (master read) 

    masterTransmit(MDATA,MSDA,MSCL); 

    -- Check for Ack/notAck from slave 

    probeACK(MACK_SAMPLE_1,MACK_SAMPLE_2,sda,MSDA,MSCL); 

    wait for 100 ns; 

 

    -- I2C: Check to see if Slave toggled the SDA line during 

    -- Height Time of the SCL 

    assert (MACK_SAMPLE_1 = MACK_SAMPLE_2) 

      report "TEST 1-1: FAILED" severity ERROR; 

    assert (MACK_SAMPLE_1 /= MACK_SAMPLE_2) 

      report "TEST 1-1: PASSED" severity NOTE; 



 
Each test consists of a sequence of input pattern data interleaved with time delays and with 
inspection of output values. Commonly repeated input sequences and output checks are 
encapsulated in VHDL procedures such as doStartCond, masterTransmit, and 
probeACK above.  The VHDL assert statement allows one to specify a conditional 
expression that describes the check to be performed, the message to be generated if the 
condition is not satisfied, and a severity level that is also reflected in the message generated by 
the assert statement.  In the evaluation test benches, all of the test messages follow a 
standard format to facilitate later analysis of the test results.  
 
In addition to test benches, a mix of python, perl, procmail, cron, and UNIX shell scripts were 
developed to automate execution of the evaluation test benches and subsequent analysis of 
results. Following is a sample of the results generated for a student design of the IIC bus. The 
percentage passed and the final grade represent a weighted sum of numerous individual test 
results. “SOURCE” refers to source code evaluation. “MAPPED” refers to evaulation of the 
synthesized netlist. Note: during execution of the grading script, the student’s source code is 
re-synthesized to ensure that the synthesized version to be tested corresponds to the source 
code that was submitted.  In this particular case, the student’s source and synthesized versions 
behaved identically, but it is very common for the synthesized version to perform relatively 
poorly as a result of sloppy coding practices.  
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SOURCE RESULTS: 

RESET  - Passed: 100.00% 

TEST 1 - Passed: 100.00% 

TEST 2 - Passed: 100.00% 

TEST 3 - Passed: 100.00% 

TEST 4 - Passed:  55.00% 

TEST 5 - Passed: 100.00% 

TEST 6 - Passed:  77.00% 

SOURCE GRADE: 35.58/40 

 



MAPPED RESULTS: 

RESET  - Passed: 100.00% 

TEST 1 - Passed: 100.00% 

TEST 2 - Passed: 100.00% 

TEST 3 - Passed: 100.00% 

TEST 4 - Passed:  55.00% 

TEST 5 - Passed: 100.00% 

TEST 6 - Passed:  77.00% 

MAPPED GRADE: 35.58/40 

 
The grading outputs are deliberately non-descriptive with respect to what tests were failed.  A 
correct version of the design is demonstrated to students after the design deadline to help them 
to understand where their design may have failed, but the burden is on the students to identify 
deficiencies in their own testing. Prior to the deadline, students receive a finite number of runs 
against the grading test bench by means of an automated queuing system. The student will run 
a turn-in script that emails a design submission to the course account. A .procmailrc file 
redirects the student submission to be processed by a script that unpacks the submission and 
places it in an evaluation queue. Another script is called at regular intervals by the UNIX cron 
utility to check the queue and run a grading script on the student submission. When this 
process completes, the student should receive an email back with results identical in format to 
what is shown above. 
 
There are three primary motivations for this policy: 1. to push students to analyze 
specifications and test their designs as thoroughly as possible rather than tailoring their design 
to a particular test bench, 2. to discourage the passing of grading script information to future 
semesters, and 3. to emphasize recognition that in the “real-world” one will not be informed in 
advance of all of the situations to which a design will be subjected, user documentation 
notwithstanding.  
 
When testing an entire microprocessor design in the Computer design and prototyping 
laboratory, a different method for checking correct operation is used but the automation of 
grading is similar. For an entire microprocessor, it is most efficient to compare a dump of 
simulated memory to the memory dump from a design that is known to operate correctly.  A 
variety of test programs are executed on source code and synthesized versions of each 



student’s design. Some test programs are provided to students as examples, but many are not 
in order to encourage students to find ways to test their design as thoroughly as possible. 
 
2.2 Evaluation of Design Originality 
 
The system for evaluation of design originality has been documented previously (Johnson, 
2004), but an overview is included here for convenience of the reader. Code plagiarism 
checkers have existed for many years (Culwin, 2001; Prechelt, 2000) but none supported 
hardware description languages such as VHDL or Verilog. However, a file compression based 
similarity measure (Bennett, 2003; Chen 2004)  was shown to be effective in estimating the 
similarity of symbol sequences for a variety of applications including gene sequencing, C-
code, and chain letters. The general concept is to perform file compression separately on three 
files: the first file to be compared, the second file to be compared, and a concatenation of the 
first and second file. The compressed file size for the concatenated source code is compared to 
the compressed file sizes of the individual source code files. If the compressed file size is close 
in size to the smaller of the compressed versions of the individual source files, one can draw 
the conclusion based on information theory that the two source files are nearly identical in 
terms of information content. A normalized similarity metric was defined so that results for 
numerous file pairs can be compared. A system of scripts was developed to compare all 
student submissions for a particular design, including past semesters. Histograms of similarity 
measures and a ranked list of the mostly closely matched student submissions are then used to 
identify student designs that require further inspection to determine if there is strong evidence 
of plagiarism. A small but non-negligible number of cases of plagiarism have been detected 
and successfully prosecuted as a result. 
 
2.3 Evaluation of Hardware Implementation 
 
In the ASIC laboratory, physical implementation of student designs is not feasible in one 
semester due to the time requirements of mask generation and fabrication. Select teams of 
students are given the opportunity to prepare designs for fabrication and test in subsequent 
semesters. However, for most students, the final product of this course is a picture of an IC 
layout for which the circuit connectivity, timing, and geometric design rules have been 
verified. No automation has been created for layout evaluation since connectivity, timing, and 
design rule check results can be inspected readily by laboratory TAs. 



 
In the Computer design and prototyping Laboratory, the final product of each design is (in 
most cases, at least) a physical implementation using an FPGA based prototyping system. 
Over the course of a semester, students implement a 16 bit multicycle processor based on the 
MIPS processor described in the text Computer Organization and Design (Patterson and 
Hennessy, 1998), a 16 bit pipelined processor for the same instruction set, and small 
instruction and data caches that are integrated with the pipelined processor.  Reasonably 
thorough testing (though not by industry standards) of the complete processor designs can be 
accomplished by executing a collection of test programs compiled for the specified instruction 
set. The test programs are designed so that correct program execution can be verified by 
examination of memory contents. However, some intermediate milestones in the course 
require evaluation of functional blocks, notably the arithmetic logic unit (ALU) and the data 
and instruction caches. Hardware implementations of functional blocks, especially the caches, 
can only be demonstrated manually for a very small set of test cases. A LabView ™ (from 
National Instruments) virtual instrument has been created to run on a Tektronix 720 log 
analyzer and pattern generator. The virtual instrument will download each of a collection of 
student designs to the FPGA prototyping board, use the pattern generator to drive the circuit 
inputs, and use the logic analyzer to capture outputs. The resulting outputs are compared to 
expected outputs. Results are compiled in a manner similar to the simulation based 
evaluations.  The virtual instrument has been demonstrated, but it has not yet been used in the 
evaluation of student designs.  
 

3. CONCLUSIONS AND FUTURE WORK 
 

In this paper, we have presented examples of the kinds of automation that can be used in 
digital hardware design courses to provide thorough and consistent testing of all student 
designs, encourage thorough testing by students of their own designs, validation of the 
originality of student designs, all with relatively little manual intervention on the part of TAs 
or the instructor.  An automated FPGA hardware testing system has been created and 
demonstrated using LabView ™, but the system has not yet been used in the evaluation of 
student designs. Future work will focus on using the automated hardware testing for evaluation 
of actually student designs, and comparing the evaluation results to what would have been 
determined from live student demonstrations and from simulated test cases. 
 



It should be noted that in scholarly literature, nothing seems to have been published on the 
subject of automated functional evaluation of complex student digital system designs. 
Extensive literature is available on the automated evaluation of many other types of student 
work including programming assignments and on research in functional verification of digital 
system designs. Both areas are related to this work, but documentation of the application of 
basic functional verification techniques to automated grading seems to be unique. 
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