
American Society for Engineering Education April 1-2, 2005 – Northern Illinois University, DeKalb, Illinois.
2005 IL/IN Sectional Conference

Session C-T1-4

EFFECTIVELY TEACHING C IN AN INTRODUCTORY EMBEDDED
MICROCONTROLLER COURSE

Jeffrey J. Richardson

Purdue University, West Lafayette, Indiana; Email: jricha14@purdue.edu

ABSTRACT

This paper details an effective approach to teaching the C programming language in an
introductory microcontroller course. For the past several years, the Electrical and Computer
Engineering Technology department at Purdue University has been teaching the C programming
language as the language of choice for the introduction to microcontrollers course. Teaching a
high-level language (HLL) in an introductory microcontroller course in preference to an
assembly level language is a contrast to institutions with similar programs. The use of a HLL
allows the students to concentrate on the material and concepts and not get bogged down in the
cryptic details of how to implement a solution in assembly. The difference is that a HLL allows
values to be written directly into the register instead of moving data through multiple operations
with assembly. Just-in-time (JIT) teaching methods are used to introduce new components of the
C programming language as needed. The lab experiments are carefully designed to spread out
the concepts of the language over the entire course. After a problem is presented, the students
are taught what must be done to solve the problem and why? Once an algorithm has been
established and evaluated, the algorithm is drawn graphically in the form of a flowchart. The
flowchart is then easily translated into the C code required to solve the given problem. A JIT
teaching method allows the C language to be taught indirectly and keeps the focus of the course
on the true subject matter: microcontroller fundamentals. The techniques outlined in this paper
relegate the programming language to a simple tool to implement a solution.

1. INTRODUCTION

Over the last ten years, hundreds of millions of microcontrollers, a microcomputer that contains
most of its peripherals and memory inside a single integrated circuit along with the CPU, central
processing unit, have been incorporated into products ranging from keyboards to automobile
control systems (Ayala, 2000). Originally they were used only for expensive industrial-control
applications, but as technology brought down the cost of dedicated microcontrollers, they began
to appear in moderately expensive applications such as automobiles, communications and office
equipment, and televisions. Today’s embedded systems are so inexpensive that they are used in
almost every electronic product in our life (Lewis, 2002).

American Society for Engineering Education April 1-2, 2005 – Northern Illinois University, DeKalb, Illinois.
2005 IL/IN Sectional Conference

High-Level Languages are rapidly becoming the standard methodology for embedded
microcontrollers due to improved time-to-market and simplified maintenance support
(Myklebust, N.D.). To keep pace with the changing times and technology, a high-level
programming language is now being utilized in the introductory embedded microcontroller
course taught as part of the Electrical and Computer Engineering Technology curriculum at
Purdue University, West Lafayette.

2. HIGH-LEVEL PROGRAMMING ADVANTAGES

It was the belief in the early days of embedded microcontrollers that the assembly language was
the only choice for producing code for applications. The extremely limited on-chip space for
data and program code did not appear to be an adequate place for anything developed using a
high-level language (Stewart & Miao, 1999). High-level languages (HLL’s) historically produce
larger code sizes than assembly programs which results in a reduced speed of execution. During
the past several years, compilers have emerged on the market that claim to produce code as
efficient as assembly (Stewart & Miao, 1999). In addition to more efficient compilers,
advancing technology surrounding microcontrollers continues to provide greater amounts of
functionality and speed. These increases in technology have led to the almost universal use of
high-level languages to program even time-critical tasks that once require assembly language
programs (Barnett, Cox, & O’Cull, 2003).

There are several advantages in using HLL’s instead of the assembly language when developing
microcontroller applications. These advantages include reduced development time, easier
maintainability and portability, and easier reuse of code. High-level languages allow
programmers to deal with complex objects without worrying about details of the particular
processor on which the program is running (Darnell & Margolis, 1991). Writing HLL programs
frees the programmer from having to worry about the low-level details of a program (Reisdorph,
1998).

C is a general-purpose high-level programming language, developed without a specific processor
in mind and quickly became the language of choice for programmers due to the advantages it has
over other high-level languages (Stewart & Miao, 1999).

3. C PROGRAMMING AND EMBEDDED MICROCONTROLLERS

Software development with embedded controllers requires a structured approach to
programming. Many embedded systems have to run 24 hours a day, seven days a week, 365
days a year. They cannot be rebooted when something goes wrong! For this reason, good
coding practices and thorough testing take on a new level of importance in the realm of
embedded microcontrollers (Lewis, 2002). The C language facilitates a structured and
disciplined approach to computer program design (Deitel & Deitel, 1992). According to
MacKenzie, the advantages of adopting a structured approach to programming include the
following: a program’s sequence of operations is simple to trace and thus facilitates debugging,
structures lend themselves easily to building subroutines or functions, structures are self-

American Society for Engineering Education April 1-2, 2005 – Northern Illinois University, DeKalb, Illinois.
2005 IL/IN Sectional Conference

documenting and are easy to describe in flowcharts, and structured programming results in
increased programmer productivity (1991).

Perhaps the most compelling reason for using any high-level language is to save programmer
time. C compilers are supplied with a library of C programs that perform many common math
and character-handling tasks. Using these standard-function C programs relieves the
programmer of having to write, test, and debug equivalent versions (Ayala, 2000). Although the
standard library functions are technically not a part of the C language, they are invariably
provided with ANSI C systems (Deitel & Deitel, 1992).

4. EFFECTIVELY TEACHING THE C LANGUAGE

The C programming language is finding its way into more and more curricula and schools every
day (Antonakos & Mansfield, 2001). The ECET curriculum does not require a C programming
class prior to the introductory microcontroller course. Therefore, the instructor must teach the C
language, as it pertains to embedded microcontrollers, as well as microcontroller fundamentals.
Teaching the C programming language, or any language, will reduce the amount of lecture time
that is devoted to the actual microcontroller fundamentals. Utilizing the following approach can
significantly reduce the lecture time required to deliver the programming concepts.

Solving problems using an embedded microcontroller and the C programming language is the
terminal objective of the course. To this end, teaching problem solving techniques is a must. It
has been the experience of the ECET department at Purdue that algorithm development is the
number one challenge faced by the students. To assist the students in learning to solve problems
by generating algorithms, it is necessary to work through fully illustrated examples early in the
course. Initially, the students are spectators in the algorithm development process but quickly
become active participants. Generating algorithms is an essential first step in writing software.

Once an algorithm has been developed, a flowchart is generated. Flowcharts are graphical
representations of algorithms and are a vital visual tool in translating the algorithm into software.
Psuedo code is also a useful tool for translating algorithms into software, but flowcharts are
preferred during the initial stages of the course. When drawn in the proper form, flowcharts
allow the algorithm to be easily converted into the corresponding
software. Flowcharts also allow the problem to be described in
terms of “what must be done” rather than “how it is to be done”
and help the student to “think out” a program (Deitel & Deitel,
1992).

Flowcharts are drawn using three special symbols: ovals,
diamonds and rectangles (see figure 1). Rectangles are used to
indicate any process that must be performed. Decisions are
represented with diamonds and ovals are used to indicate the
starting and stopping points of the algorithm. Lines with
arrowheads, commonly known as flow lines, indicate the order in
which the processes and decisions are to be performed.

B asic F low chart Sym bols:

Term ina to r

P rocess

D ecis ion

Figure 1 – Basic Flowchart.

American Society for Engineering Education April 1-2, 2005 – Northern Illinois University, DeKalb, Illinois.
2005 IL/IN Sectional Conference

According to MacKenzie, all programming problems can be solved using three structures:
statements, loops, and choices (1991). The completeness of the three structures seems unlikely;
but, with the addition of nesting, structures within structures, it is easily demonstrated that any
programming problem can be solved using only three structures (MacKenzie, 1991). Statements
provide the basic mechanism to do a process. The “loop” is used to repeatedly perform an
operation and the “choice” is the programmers “fork in the road” both of which are decisions
(MacKenzie, 1991). The C structures represented by the flowchart symbols described earlier, are
easily identifiable as seen in the figures 2 and 3.

 Figure 2 – IF/ELSE. Figure 3 – While Loop.

Drawing a flowchart in the proper form, to be easily translated into C code, may take several
iterations. The following rules should be applied when creating flowcharts. The initial flowchart
should be kept to a one-page limit. Flowcharts must have a single starting and a single ending
point as dictated by structured programming. Complicated processes, sequences of processes
and control sequences should initially be represented as a single process. Once a simplified
flowchart is created, the simplified processes should be expanded in additional flowcharts
created on new pages. The rules for creating structured flowcharts are shown graphically in
figure 4.

An embedded microcontroller course
cannot cover, nor should it try to
cover, the entire C programming
language and all of its nuances. The
essential C programming topics to
solve problems with embedded
microcontrollers include basic
program structure, character and
integer sized variables, the
assignment operator, the arithmetic
operators, and the bitwise operators.
In order to add “intelligence” to the
software through decision making,
the if/else and the while loop
constructs need to be taught along
with the relational operators. In
order to create modular software,

Rule 1
Rule 3

Rule 2

Rule 3

Figure 4 – Flowcharting.

American Society for Engineering Education April 1-2, 2005 – Northern Illinois University, DeKalb, Illinois.
2005 IL/IN Sectional Conference

functions should be taught. Arrays should also be taught to assist in creating appropriate,
structured code. Topics like do/while loops and for loops can be included, but are not necessary
as those operations can be performed by while loops. Additional topics like pointers can also be
avoided, as they tend to confuse beginning programmers and are not required in an introductory
microcontroller course.

Once the number of C language elements has been reduced, a strategic approach must be taken
to implement the language. Trying to teach all of the C language elements at once is
counterproductive and unnecessary. A carefully designed sequence of laboratory projects will
facilitate the scheduling of topics and allow for a just-in-time (JIT) approach for teaching the C
language concepts.

Assuming that one laboratory experiment will
be conducted each week, then only the new C
language topics covered in the upcoming lab
assignment must be covered prior to the
laboratory in lecture. For example, the first
laboratory assignment is an introduction to the
integrated development environment (IDE)
and the available lab hardware. The students
require very little C knowledge to complete
this experiment. At Purdue, the lab
instructors “walk” the students through the
creation of a simple C program to “echo” an 8-bit value from one microcontroller port to another
(the complete program can be seen in figure 5). Since the program is simple in nature, a lab
instructor can explain the entire program in a matter of minutes thus not requiring any lecture
time to be devoted to preparing for this laboratory activity. Most of the time in lecture is spent
teaching why the I/O ports need to be initialized and what must be done to accomplish this, not
how it is done with C. However, the lecture instructor can cover the basic program structure,
also in a matter of a couple minutes, to reinforce what has or what will occur in the lab. If the
details of the while(1) loop are omitted for now, the only other topic to cover is the assignment
operator which is intuitive for most students. The while loop is covered in detail later in the
course. For now, the students need only be concerned with what it does, not how it works.

The second laboratory assignment has the students explore integer math on an 8-bit
microcontroller. In order to accomplish this experiment, the students need to be introduced to
the concepts of variables and variable size limits. Since the course utilizes an 8-bit, non-floating
point processor, the character sized (8-bits) and integer sized (16-bits) variables are the only two
required. Reducing the number of possible variables to two significantly reduces the amount of
class time required to deliver the instructional material. The operation and use of the arithmetic
operators in C are straightforward and require minimal lecture time. The bulk of the lecture
material can focus on applications of using variables and arithmetic operations to solve
problems.

The third laboratory experiment has the students monitor the microcontroller ports and variables
while performing bitwise operations. Since the students are required to have completed a digital

/********************
Lab experiment 1 - Jeffrey J. Richardson – Jan. 20, 2005
********************/
#include <mega16.h>

void main(void)
 {
 DDRA = 0x00; // set Port A for Input
 DDRC = 0xFF; // set Port C for Output

 while(1) // never end
 {
 PORTC = PINA; // echo value
 }
 }

Figure 5 – First Program

American Society for Engineering Education April 1-2, 2005 – Northern Illinois University, DeKalb, Illinois.
2005 IL/IN Sectional Conference

electronic fundamentals course prior to taking a course in microcontrollers, the bitwise C
operators can be quickly and effectively taught by relating them directly to their digital electronic
equivalents as seen in figures 6 and 7.

It is not until the fourth laboratory experiment that programs actually make decisions and alter
program flow. Since the relational operators are used to make decisions, they must now be
taught along with the if/else and while loop constructs. By eliminating the use of do/while loops
and for loops, lecture time can be kept to a minimum when teaching these control structures.
The sequence of processes, relationship of the decision and the program flow, as indicated by the
flow lines, determine which construct must be used as seen previously in figures 2 and 3.

Digital Logic Review

A B Y = A * B
0 0 0
0 1 0
1 0 0
1 1 1

&
A 0 0 1 1
B 0 1 0 1

Y = A & B 0 0 0 1

Digital Logic Review

|

~

^

 Figure 6 – Bitwise Operators 1. Figure 7 – Bitwise Operators 2.

Functions are not taught until the fifth week of the
semester when the programs require operations like
the reading of a keypad to be repeated. Arrays are
not introduced until the seventh week of the semester
when they are used to hold data to be displayed on 7-
segment LED’s. The concept of arrays can be taught
by relating them to the cells located inside an Excel
worksheet. This relationship provides the students a
visual representation of how the data is organized.

The C programming language can be mysterious and
messy while promoting bad programming habits.
The problem is that C gives special meaning to many
punctuation characters, such as asterisks, plus sign, braces, and angle brackets. Most problems
that beginners have with C relate to forgetting punctuation marks (Ayala, 2000). To reduce
confusion, programming standards are enforced. These standards include indenting all blocks of
code by one tab space and placing the opening and closing braces of a block of code on separate
lines. Each block of code for a control structure must be bounded by braces (even single lines)
whether required by ANSI C or not. Every line in the program must have a comment unless the
operation is obvious. Comment must indicate what is being done and why. Shortcuts are not
allowed in programs expect for the increment and decrement arithmetic operations. Some of
these standards can be seen in figure 5. To assist the student in implementing these standards, a

Arrays

Name of the Array

Array Element

Figure 8 – Arrays

American Society for Engineering Education April 1-2, 2005 – Northern Illinois University, DeKalb, Illinois.
2005 IL/IN Sectional Conference

reference sheet should be constructed to provide the students a quick reference for use when
translating a flowchart into software. A reference guide will reduce the number of syntax errors
and misplaced or missing punctuation marks.

5. CONCLUSION

The C programming language can and is successfully taught in the introductory microcontroller
course at Purdue University through an indirect approach. The C language is treated as a tool to
solve problems along with algorithms and structured flowcharts. The emphasis is placed on
what has to be done and why through the generation of the algorithm and resulting flowchart.
Once an appropriate algorithm and flowchart have been produced, the flowchart can quickly and
easily be translated into C code by identifying the corresponding C structures in the flowchart.
Implementing a reduced number of C structures along with programming standards promotes
good structured programming techniques and assists in identifying missing punctuation marks.
Through the careful design of laboratory experiments, the C elements required to generate a
solution can be spread across the entire course. The techniques listed in this paper, when applied
properly, will lead to an effective method for teaching the C programming language in an
introductory embedded microcontroller course.

REFERENCES

Antonakos, J. L. & Mansfield, K. C. (2001). Structured C for Engineering And Technology.

Prentice Hall, Upper Saddler River, NJ.
Ayala, K. (2000). The 80251 Microcontroller. Prentice Hall, Upper Saddle River, NJ.
Barnett, R. H. (1995). The 8051 Family of Microcontrollers. Prentice Hall, Englewood Cliffs,

NJ.
Barnett, R. H. & Cox, S. A. & O’Cull, L. D. (2003). Embedded C Programming and the Atmel

AVR. Delmar Learning, Clifton Park, NY.
Bogen, A. & Wollan, V. (N.D.). AVR Enhanced RISC Microcontrollers. ATMEL Development

Center, Trondheim, Norway.
CodeVisionAVR User Manual (2001). HP InfoTech S.R.L. Bucharest, Romania.
Darnell, P. A. & Margolis, P. E. (1991). C: A Software Engineering Approach. Springer-Verlag,

New York, NY.
Deitel, H. M. & Deitel, P. J. (1992). C How to Program. Prentice Hall, Englewood Cliffs, NJ.

Efficient C Coding for AVR (2002). Atmel Corporation. Retrieved June 15, 2002, from:
http://www.atmel.com/atmel/acrobat/doc1497.pdf

Holmes, S. (n.d.) C Programming. February 5, 2002 from
http://www.strath.ac.uk/IT/Docs/Ccourse

Lewis, D. W. (2002). Fundamentals of Embedded Software. Where C and Assembly Meet.
Prentice Hall, Upper Saddle River, NJ.

MacKenzie, I. S. (1999). The 8051 Microcontroller. Prentice Hall, Upper Saddle, NJ.
Myklebust, G. (N.D.). The AVR Microcontroller and C Compiler Co-Design. ATMEL

Development Center, Trondheim, Norway.

American Society for Engineering Education April 1-2, 2005 – Northern Illinois University, DeKalb, Illinois.
2005 IL/IN Sectional Conference

Reisdorph, K. (1998). Teach Yourself Borland C++ Builder 3 in 14 Days. Sams Publishing,
Indianapolis, IN.

Schultz, T.W. (1998). C and the 8051. Hardware, Modular Programming, and Multitasking.
Prentice Hall, Upper Saddle, NJ.

Schultz, T.W. (1999). C and the 8051. Building Efficient Applications. Prentice Hall, Upper
Saddle, NJ.

