
American Society for Engineering Education April 1-2, 2005 – Northern Illinois University, DeKalb, Illinois.
2005 IL/IN Sectional Conference

Session C-T3-4

METHODS OF TEACHING LEADERSHIP TO UNDERGRADUATE
STUDENTS IN COMPUTER SCIENCE AND SOFTWARE

ENGINEERING

Steve Chenoweth

Rose-Hulman Institute of Technology; Email: chenoweth@rose-hulman.edu

1. INTRODUCTION

Rose-Hulman Institute of Technology (RHIT) is atypical in requiring a course in
requirements engineering and a course in project management for undergraduate
computer science (CS) majors. These courses also are required for software
engineering (SE) majors, who further must take a course in software architecture and
design. All three required courses are generally in the area of management and
technical leadership, and it is unusual for them to be a required part of bachelors-level
curricula. The courses help students understand overall software processes and the
roles of different stakeholders in a project. The courses are justified also because work
experience following graduation for many of these students will include assuming
leadership roles on software engineering projects. There remains the question of how
to teach technical leadership to undergraduate students, many of whom have not had
any related work experience. This paper addresses that question.

2. BACKGROUND

For the 2003-4 school year, the computer science (CS) department at Rose-Hulman Institute
of Technology (RHIT) added a baccalaureate program in software engineering (SE). This
new program included three courses introducing students to various aspects of software
leadership. Those courses also promised to help solve a persistent problem for RHIT—Over
90% of the graduates of both bachelor’s programs would become a part of software
development organizations, and many would go on to become technical leaders and
managers in the software field without necessarily gaining an advanced degree as additional
preparation. More than 1/3 of the department’s CS graduates over the past ten years have
assumed leadership positions in their field, with titles such as Project Manager,
Development Manager, Chief Software Engineer, Software Architect, Director of
Software Engineering, and Senior Systems Analyst. Many more perform technical
leadership activities as a part of jobs like Lead Developer and Software Design
Engineer. Yet less than half of these bachelor’s graduates acquire additional degrees.

American Society for Engineering Education April 1-2, 2005 – Northern Illinois University, DeKalb, Illinois.
2005 IL/IN Sectional Conference

While a few of the rest gain management training in other ways such as a certification in
project management, generally there appears to be an unmet need for leadership training
among these graduates. Additionally, the further education which they do get may not be
specific to leadership in software development; for example, an MBA or a master’s in
computer science which focuses purely on technical subjects.

One could argue that anyone with a bachelor’s degree in computer science or software
engineering is a likely candidate for technical leadership in software development simply by
virtue of having this much background. According to the U.S. Bureau of Labor Statistics,
only about half of the people doing computer programming in the U.S. have a college
degree in any field (Bureau of Labor Statistics, 2004-05).

The question of providing engineering leadership skills to undergraduates is one which
generally has fallen “under the radar” in discussions among educators. No ABET criteria
for management, software architecture, or leadership exist for either software
engineering or computer science (ABET, 2004a; ABET, 2004b). Indeed, management
is an ABET criterion only for architectural and petroleum engineering, while
leadership is a criterion only for construction. This differs from the ABET criteria for
advanced engineering programs, where leadership is included (ABET, 2004a).
Interestingly, these omissions also make the criteria for undergraduate engineering programs
different from criteria for architecture in the building trades; there the National
Architecture Accreditation Board specifies management and leadership as integral to
an undergraduate’s development of design and technical skills (NAAB, 2002).

The IEEE/ACM curriculum guidelines for bachelors programs in computer engineering,
computer science and software engineering do not emphasize technical leadership
(JTFCEC, 2004; JTFCC, 2001; JTFCC, 2004). In these three related sets of guidelines, the
word “leadership” appears only as a part of the objectives for software engineering. There,
one sees a goal to understand and appreciate leadership, not to apply knowledge or show
mastery of it. The computer engineering and software engineering guidelines do list
management skills as a part of preparation for professional practice. Requirements
management, software processes and practices are included in the guidelines for CS and SE
curricula, playing a substantially larger role in the latter. With both curricula, however,
software architecture appears to be considered a non-people-related task, a subset of design
work. In most of the uses of “management” in these guidelines, it would be possible to
conclude that “leadership” was not an expected part of that. For example, in the detailing of
SEEK areas and knowledge units in JTFCC (2004), the management core areas of planning,
organizing, and controlling are listed, while leadership is not.

The bachelors in software engineering is still an unusual degree in the US (Bagert and
Chenoweth, 2005), and most schools do not have courses in their CS departments which
specifically address the subject of technical leadership. More often one sees a one-term to
one-year course in software engineering, with as little as a week on each of the topics of
requirements, project management and architecture, and little focus on leadership. CS
undergraduates are also offered a capstone project in many schools, which also is true at
RHIT. The amount of leadership experience provided in these senior projects varies a lot;

American Society for Engineering Education April 1-2, 2005 – Northern Illinois University, DeKalb, Illinois.
2005 IL/IN Sectional Conference

often each team has a single leader over its entire duration; everyone else is a team member;
and only the team leader has regular contact with the project’s client.
To create the SE curriculum at RHIT, the IEEE/ACM guidelines were enhanced by
leadership topics derived from the course authors’ industrial experience. The courses from
this new SE program which promised to help fill the need for leadership education included
software requirements engineering, software project management and software architecture
and design. The first two of these were made a required part of the CS curriculum as well as
of the SE curriculum. Software architecture and design became a required part of the SE
curriculum, and a course which many CS majors took as a free elective. It is useful to
describe here how each of these courses contributes to the building of management or
leadership skills:

Software requirements engineering is a course about interacting with customers, clients
and users in order to elicit, understand and manage their needs related to a software project,
and to communicate those needs to software developers. In many software organizations
this is a vastly larger role than just writing down requirements as someone states them, or
translating their form. Requirements engineers must gain management cooperation to study
workers whose jobs they may redesign, and the engineers must extract information skillfully
from subject matter experts who are themselves used to playing a leading role but not
necessarily used to describing that role. The most critical part of the requirements job is
conflict resolution among dissenting interests, and leadership skills are required to reduce
project risk. The requirements analyst represents the project to its outside stakeholders, and
represents those stakeholders to the project.

Software project management deals not only with estimating and scheduling technical
tasks but also with organizing and leading software people toward successful development.
A course in this area is direct preparation of undergraduates for their likely first promotion
into management. Project management is somewhat different for software engineering than
for most engineering disciplines, due to the fact that different styles of development are
allowed which incur more risk (Chenoweth and Yoder, 2004). The spiral development
model is a good example – in it, development is allowed to commence even when it is
acknowledged that the client, users and customers are unable to provide clear and complete
requirements.

Software architecture and design includes the usual topics from the world of software
design, such as design qualities, methods, and patterns; the course goes beyond this in that
software architecture means overall technical leadership. The software architect is
responsible for the technical success of a whole software project – his or her high-level
design must work. It must solve the client’s problem. The architect also must sell the design,
as a solution to a problem, to all its stakeholders, from client to developer and tester.

Each of these three courses thus promised to help fill the need of preparing RHIT
undergraduates for a career involving leadership and management in software development.

American Society for Engineering Education April 1-2, 2005 – Northern Illinois University, DeKalb, Illinois.
2005 IL/IN Sectional Conference

3. EXECUTION AND RESULTS

These courses were taught for the first time in the 2003-4 school year, primarily as required
courses for juniors, with some senior CS students and others taking them as electives.
Software requirements was taught in the fall, then software project management, and finally
software architecture and design, in RHIT’s three-term school year. Practicing of
leadership roles was distributed across these courses using a common project as a vehicle.
Here are some highlights from these courses:

3.1. Software requirements engineering

In this fall course students had to elicit and write real requirements for the multi-course
project, while interacting with a client who was external to the classroom. The project was to
create a graduation planning system, an electronic form which followed the real rules for
graduation at RHIT. The clients were professors from CS and other departments, who were
in fact experienced advisers and knew the system requirements for their major areas. The
students did this work as teams of four; in each class they had different clients, leading to
varying results even with the same project. The teams built requirements documents,
including detailed use cases and a prototype, which they then had to defend in front of the
class and the client. Almost all the teams were successful in building and presenting a
sophisticated set of requirements addressing their client’s needs as they had heard them.

The instructors found while teaching this course that students who already had some related
work experience had, in general, a much different attitude about the course. The level of
this work background varied. Many students were involved in part-time jobs, had done
extensive co-oping or had held summer internships. A few worked full-time in software
development while attending school. Almost all of these work-experienced students had
been a part of projects large enough that they themselves had played a narrow role, and they
had experienced in person the difficulties large projects have with communication and
leadership. They had seen first-hand how key requirements which were incorrect or missing
had caused project delays and rework; they were extremely eager to hear how to do
requirements engineering effectively. This was no surprise – most software projects fail in
some substantial way.

In contrast, roughly half of the students in these classes had never done real software
development. They had perhaps never been faced with systems so complex that
engineering approaches had to be used beyond intuitive application of the codified CS
body of knowledge. The software requirements course was the first course that was a part
of their major but which was not clearly built upon first principles. The need to appeal to
heuristics and engineering best practices felt “not right” to some of them. The instructors
heard from them that the course had no place in a computer science major because it was
empirical, not inherently analytical. It was a very rude shock to these students that things
had to be done a certain way because someone called the client wanted it that way, and if the
student thought of a better way, the client might simply exert their authority and say no.

American Society for Engineering Education April 1-2, 2005 – Northern Illinois University, DeKalb, Illinois.
2005 IL/IN Sectional Conference

This discrepancy in reactions was a problem which had been anticipated. In general,
undergraduate education in computer science has focused on the deductive application
of first principles; students have not often been faced with systems large enough that
other engineering approaches become preferable. Nor have they been faced with
situations where someone else’s value system has an effect on the work they must turn
in for a grade.

A remedy for this problem which RHIT had already begun to apply was a radical one
impacting the overall CS curriculum. RHIT had started teaching the three core courses
in its computer science program as if they also were software engineering projects.
Even in the freshman course in object oriented programming, students had to write
requirements and draw designs for review, work as teams, use the spiral development
methodology and employ software development environments. In the second course in
programming, students were being introduced to projects where they were each other’s
clients, not totally in charge of how they solved a general problem presented by the
instructor. The heuristic for this effort was, “How much of software engineering can
we push down to an early stage in the program?” Students in this first software
requirements course, now mostly juniors, had not had as much of this new approach
when they had taken these earlier courses.

In the software requirements course the instructors adopted several tactics to help
overcome the lack-of-experience problem. They mixed students having development
experience in with those who had none. They created the project to be something
related to school and which solved a problem familiar to all students. They included at
the end of the course an actual programming problem – the creation of a GUI
prototype; for some students the fact that they got a chance to “sling code” brought
home the reality of the rest of it. The two instructors who taught the course both had
had real-world software development experience and brought to the class examples of
requirements, war stories, and exercises which tied students’ imaginations to the realm
of software development. The instructors provided supplementary text materials with
examples and case histories. As a sample course material, the first class homework
was to write a problem statement for getting a job which the students actually might
want upon graduation, extracting requirements from Monster.com position
descriptions.

The instructors had hoped that the use of professors as clients would aid in resolving
another anticipated issue. This was the issue of gaining as much time as possible for
students to interact with their clients while they are engineering requirements.
Immersion in a realistic work environment is the learning situation most likely to
change the values of students not having outside experience. The professors’
availability was more limited than would have been ideal. In the end the instructors
tried for one meeting a week between each team and these clients and were lucky to get
that. The ideal would have been more like having interactions with the client every
day. Constant contact is a tactic used in very well run projects which are creating
something novel to both the developers and the client, such as a new kind of product.

American Society for Engineering Education April 1-2, 2005 – Northern Illinois University, DeKalb, Illinois.
2005 IL/IN Sectional Conference

It is the standard preferred in the Extreme Programming method of software
development (Chromatic, 2003; Beck, 2005).

3.2. Software project management

In the second course students built a model for a project plan from knowledge gathered
about available people and tools for developing the multi-course project. Most of the teams
were successful in creating a plan which dealt with risks and contingencies, and which
emulated real-world project issues.

This course found the same variance in student attitude, based largely on their depth of
software development background. Students who had worked on projects larger than school
sized ones were much more able to perceive value in the techniques of project management.
The instructor used similar teaching methods to relate the unfamiliar practices and heuristics
to students without software development experience.

This class ran into an additional problem – Some students for whom this course was a
requirement had actually worked as project managers. This required an accommodation in a
new direction, for those already acting as technical leaders and wanting more advanced
subjects. The instructors dealt with this reverse problem in two ways: The most
experienced student was given special assignments in lieu of the regular class. These
assignments included creation of a project plan with more detail and nuances, and a risk
assessment activity for a senior project which had some hidden risks. For the other students
who had had some experience, the instructors supplemented the regular project management
class with weekly seminars where they discussed special topics of their own choice – issues
related to technical leadership. A sample topic was, how to handle a double client situation,
when only one of the clients is cooperating with the project.

3.3. Software architecture and design

In the third course students created an architectural framework and specification for the
multi-term project, presenting their design to outside clients and to potential developers. As
about half the material, this one-term course included design topics like the “Gang of Four”
patterns (Gamma, et al., 1995). The goal of also covering a substantial amount of software
architecture was rather ambitious. Indeed, it is unusual for a first course in software
architecture to include the actual building and testing of a system design.

The course was sequenced so as to stimulate leadership, by providing progressively
greater autonomy to student teams. This agenda was built into a wide range of team
design and architecture activities, including the term project. The early weeks of the
course focused much more on learning by doing individual assignments and readings,
by attending lectures and participating in discussion. It was necessary to get through
most of the design theory and text materials very quickly. This left the rest of the class
time for the students to create an architecture document and then start to implement it.

American Society for Engineering Education April 1-2, 2005 – Northern Illinois University, DeKalb, Illinois.
2005 IL/IN Sectional Conference

In this course the instructor tried a variety of accommodations to increase the learning
of all the students. He slowed the initially planned pace of the course, adding material
designed to enhance the understanding of architectural subjects by all students. Once
again, being able to do something more analytical appealed to many students, so more
time was given to exercises in implementing design. The instructor included
interactions with other classes – for example, the students in this class acted as
consultants in a design project for a sophomore level CS course. And he included a
reverse role-playing situation – those same sophomores participated in evaluating the
designs done by the software architecture class, acting as “developers” who had to
understand how a team’s design worked in order to implement it. This test of
leadership was very interesting to observe, because it required underclassmen to
evaluate the work of their superiors.

For this class, records were made of prior student work experience versus class
performance, so that results could more carefully be analyzed. Perhaps because the
course was a free elective for CS majors, required only for SE majors, a much higher
percentage had had related work experience: 79%.

On both their team projects and their individual work, performance results of the
students were clustered into a high achievement group and a more modest achievement
group. Overall, the second group scored a full letter grade lower. Differences between
these groups were exaggerated on individual assignments, while being milder but still
present on team assignments. (Some teams represented a mixture of these achievement
groups.) In the high achievement group, all but one student had had prior software
development experience. Three of the four students with no prior work experience
were in the more modest achievement group. Additional factors appeared to contribute
to the performance seen in this class, such as whether or not students generally had
high academic achievement.

4. CONCLUSIONS AND RECOMMENDATIONS

The motivation for introducing leadership education into the undergraduate CS
curriculum was to close a gap, one created by advancement of RHIT’s CS graduates
into leadership positions without getting an advanced degree as preparation for that
role. The gap-closing was accomplished by offering courses to these students taken
from the new SE program; these courses did provide education in software leadership.
This paper described some key outcomes and learnings from the first year of
experience at this endeavor.

4.1. Effective role playing

In retrospect, the most difficult part of making the requirements course successful was
maximizing the amount of time the students spent with other people playing the roles
of customers, users or clients. Those interactions are where the students get to practice
their leadership in a safe environment. For students lacking related work experience,

American Society for Engineering Education April 1-2, 2005 – Northern Illinois University, DeKalb, Illinois.
2005 IL/IN Sectional Conference

only immersion in the actual task compensates for this lack. The instructors had teams
try to meet with their clients once a week if possible. This was not enough, though it
did emulate the rather limited way in which some software projects gather
requirements. Students need to become immersed in the experience of working with a
client, representing a project to the person who is explaining their needs. RHIT is still
searching for a solution to this particular problem. When the course is taught without
sufficient client interaction, students will learn to make up requirements on their own,
those requirements which they could not get from a valid source. That is a terrible
lesson.

The lack of face-to-face requirements time is a problem which impacts every
undergraduate engineering course where requirements-gathering is employed. Because
the projects are not “for real,” real clients do not want to spend the usual amount of
time explaining and negotiating the requirements with an engineering group. The
clients’ organization will not be impacted, or they will not really have to sell the
project’s output as a product. As senior projects, for instance, industry usually offers
non-critical activity to students, because of their lack of control, the higher risk it
won’t be completed, and other factors. This leads to the industrial client’s not wanting
to spend the amount of personal time getting the requirements right that they would
spend on a mainline project for their company. In particular, the confrontations where
leadership and negotiation skills are important tend to be avoided.

One possible solution to this deep problem is to utilize outside clients from nonprofit
or volunteer organizations to interact as clients for these projects. This already is done
in senior projects and in multi-term projects such as EPICS (Jamieson, et al., 2001).
Nonprofit clients tend to be less sophisticated and less demanding than industrial
clients, yet they often are willing to give more time to students working on a school
project. Other options for client representation in requirements-learning courses may
include having class assistants or students from other CS or SE courses play the client
roles. Alternatively, each student taking the class can play multiple roles, being a
requirements engineer for one project and a client for another project. Such networks
of class roles surely must be devised with some attention to clarity.

4.2. Mixtures of work experience

A major concern which emerged in all three courses was how to use teaching methods
allowing for the wide range of related work experience which undergraduate students
have had at the time they take these classes. Key accommodation methods which the
instructors found useful included:

• Supplementing text materials with examples and case histories;
• Offering separate discussion and help sessions for novices and for the experienced;
• Organizing team activities so as to provide gains to both groups, such as by mixing

experience levels on a given team;
• Slowing the pace of the course, substantially below what the work-experienced

students might demand;

American Society for Engineering Education April 1-2, 2005 – Northern Illinois University, DeKalb, Illinois.
2005 IL/IN Sectional Conference

• Mixing-in material which appeals intuitively to the less experienced, such as
programming exercises that make design theory more real-feeling to them; and

• Tying these subjects to things which are familiar, such as projects based on school
experience.

In the software architecture class, records of work experience showed that, even with
these efforts, students with prior work experience tended to be higher performers.
Thus, students should be encouraged to plan for work experience voluntarily, before
taking this class. The need to slow down the pace in this particular course resulted in a
revision – During the next year software architecture and design will become two
courses at RHIT. The material of architecture and design will still be combined, in
each term of that course sequence.

At the same time, RHIT attempted to close the gap from another, more radical
direction, by including increasing amounts of software development practice into
beginning CS courses. This effort, it is believed, will help alleviate an underlying issue
for students having no related work experience. The issue is that such students tend to
value intuition, analytical thinking and first principles; they tend to devalue empiricism
and the pragmatic methods which underlie real software engineering and its technical
management. Appeals made by the instructors to these students while they are taking
classes on technical leadership are important; but the feeling of a change in values
makes these courses difficult for the work-inexperienced student. It helps for
significant pieces of software engineering to be introduced earlier in the CS
curriculum. That introduction can reorient students’ personal value systems toward
being open to best practices and heuristics.

The issue of work-inexperienced students in engineering classes seems especially
difficult to resolve in regard to their comprehending how the social environment of the
real work differs from the social environment they are immersed in at school. In
introducing one of the standard texts on human-machine interaction, Gary Perlman
says, “Many students will not have the motivating experience of seeing projects and
products fail because of a lack of attention, understanding, and zeal for the user”
(Preece, et al., 2002). A part of the problem surely lies in preparing these students to
understand a wider range of people, the problem we described as a need for effective
role playing. Neither clients nor systems users often have the culture and values felt
by college students. Beyond this difference, as Perlman suggests, real work activity
inspires students in ways usually missing from classroom experience. Students are used
to succeeding in their coursework. By the time they are juniors in college, successful
engineering students at selective schools may rarely have failed at anything they have
tried. Almost all of what they have dealt with could be brought under control simply
by increased intellectual effort. College classes and curricula are planned to be
intentionally progressive, and students have less tolerance for false starts and wasted
effort. To students who haven’t been through such lumpiness on an outside project, a
course filled with reinterpretations and rewrites can be demoralizing.

American Society for Engineering Education April 1-2, 2005 – Northern Illinois University, DeKalb, Illinois.
2005 IL/IN Sectional Conference

In this last regard, it is possible that the lack-of-experience problem is inherently hard to fix
via formal education. Students tend to expect and instructors tend to deliver courses which
are full of this feeling of incremental progress, presumably on a path leading to great things.
This obligatory class atmosphere is much different from that of real software development
shops where, “Good judgment comes from experience and experience comes from bad
judgment.”1

REFERENCES

ABET. (2004a). Criteria for Accrediting Engineering Programs: Effective for Evaluations

During the 2004-2005 Accreditation Cycle, Engineering Accreditation Commission,
Baltimore.

ABET. (2004b). Criteria for Accrediting Computing Programs: Effective for Evaluations
During the 2004-2005 Accreditation Cycle, Computing Accreditation Commission,
Baltimore.

Bagert, D.J. and Chenoweth, S.V. (2005). “Future Growth of Software Engineering
Baccalaureate Programs in the United States,” To appear in ASEE Annual
Conference & Exposition, p. 4.

Beck, K. (2005). Extreme Progamming Explained: Embrace Change, Second Edition,
Addison-Wesley, Boston, pp. 61-63.

Bureau of Labor Statistics. (2004-05). Occupational Outlook Handbook, 2004-05 Edition,
Computer Programmers. U.S. Department of Labor. On the Internet at
http://www.bls.gov/oco/ocos110.htm (visited January 28, 2005).

Chenoweth, S. and Yoder, M.A. (2004). “Project Management: Electrical Engineering
vs. Software Engineering,” ASEE Illinois-Indiana Regional Conference, 2004, p. 1.

Chromatic. (2003). Extreme Programming Pocket Guide, O’Reilly & Associates, Inc.,
Sebastopol, CA, pp. 36-38.

Gamma, E. et al. (1995). Design Patterns, Addison-Wesley, Reading, MA, 1995.
Jamieson, L.H., et al. (2001). EPICS: Serving the Community Through Engineering

Design Projects, in Learning to Serve: Promoting Civil Society Through Service
Learning, L. A. K. Simon, et al, editors. Norwell, MA: Kluwer Academic
Publishers.

JTFCEC. (2004). Curriculum Guidelines for Undergraduate Degree Programs in Computer
Engineering (Final Curriculum Report). Joint Task Force on Computer Engineering
Curricula. IEEE Computer Society and Association for Computing Machinery.

JTFCC. (2001). Computing Curricula 2001: Computer Science (Final Curriculum Report).
Joint Task Force on Computing Curricula. IEEE Computer Society and Association for
Computing Machinery.

JTFCC. (2004). Curriculum Guidelines for Undergraduate Degree Programs in Software
Engineering (Final Curriculum Report). Joint Task Force on Computing Curricula.
IEEE Computer Society and Association for Computing Machinery.

NAAB. (2002). National Architecture Accreditation Board 1998 Guide to Student
Performance Criteria (with 2002 Addendum). National Architectural Accrediting
Board, Washington, DC, p. 10.

1 Attributed to various people, including Fred Brooks.

American Society for Engineering Education April 1-2, 2005 – Northern Illinois University, DeKalb, Illinois.
2005 IL/IN Sectional Conference

Preece, et al. (2002). Interaction Design: Beyond Human-Computer Interaction. John Wiley
& Sons. Forward by Gary Perlman, p. xxi.

