
Encouraging Generalization of Programming Concepts Outside a Student’s
“Home” Programming Language

David Whittinghill
Purdue University

dmwhittinghill@purdue.edu

David Nelson
Purdue University

davenelson@purdue.edu

Abstract

It is common for seasoned programmers and teachers to regard the concepts behind computer
programming as generalizable as they are universal to all programming languages. The
quintumvirate of variables, conditions, loops, functions, and arrays are in fact found almost
universally in all modern programming languages, with object-oriented mechanisms seeing a
similar proliferation. The assumption that these concepts are self-evident once taught and that
programming students are therefore equipped to transfer this knowledge to other languages
remains untested. This manuscript proposes an assessment intended to test this assumption.
Thirty-four undergraduate students near the end of an introductory C++ programming course
were assigned to groups and provided reference materials for languages not covered in the
course. The students were presented with the course code of a short C++ program that generated
random personal names and contained the five fundamental elements listed above. They were
then asked to re-write the program on paper using a different programming language. The
students were not graded on the accuracy of the translation but rather were surveyed as to their
opinions of the exercise. Students rated the exercise as: 1) an exercise that depended upon what
they learned in the class, 2) a good exercise in teamwork, 3) increasing their confidence that they
could learn another programming language, and 4) an enjoyable experience.

Introduction

Computer programming education has become increasingly important in modern university
curricula. Computer programming, a skill useful in and of itself, is only one aspect of this
discipline’s utility. The cognitive processes involved in computer programming – problem
decomposition, logical process construction, quantitative construction of arguments 5 – provide
benefit to students beyond a narrow technical competency and can be applied in a wide range of
disciplines. For this reason, there has been increased focus by educators on not just computer
programming but in algorithmic thinking or computational thinking; a mode of problem solving
that involves approaches similar to those used to construct computer programs characterized by
sequential, logical ordering of problem steps within a set of computational constraints 19.

Choosing the best approaches both for teaching programming, computational thinking, and
assessing whether students are able to generalize the concepts they have learned has been an
important area of research in programming education 13. Researchers have examined the
spectrum between first presenting the theoretical versus applied dimensions of programming 12.
Games 17, simulations 18, social constructivist systems 9, and even AI agents 15 have been
developed to help facilitate improved learning and process outcomes. Motivational and
psychological factors have also been studied 10 8. Though the literature describes a number of
specific assessment tools that educators can implement 14 2, more assessment tools are needed in
order to provide them a well-rounded toolkit.

This paper describes a preliminary test of an assessment approach intended to give students
practice applying what they have learned in an introductory C++ programming course to other
languages beyond their “home” language the course is based upon. Students are given the source
code of a working C++ program and asked to transcribe the program to an unfamiliar
programming language within a 50-minute class session. Students must write their finished
program on paper and can use a provided reference textbook as well as any other online
materials they can find. The goals of the assessment were to create an activity that a) let the
students apply the five cardinal programming constructs (variables, decisions, loop, arrays, and
functions) in another programming language, b) provided an opportunity for teamwork, c)
increased their confidence, and d) was enjoyable for the students. The authors describe the
assessment technique and the results of a survey asking students how they felt about the
assessment after completing it.

The post-assessment student survey results indicate that our assessment was: 1) appropriately
dependent upon the course material, 2) a good opportunity to practice teamwork, 3) confidence
building, 4) enjoyable. The open-ended qualitative responses showed that though impressions
were positive overall, students would have preferred more time than the 50 minute class session
allotted to them. The authors recommend future implementations of this assessment to be
conducted in a computer laboratory so that students can attempt to compile the programs they
create.

Review of the Literature

Psychological Factors in Programming Education
Computer science, and computer programming in particular, has been a major driver of
technological progress in the modern era 1. How best to teach students to program remains an
unresolved question. I wealth of approaches exist that vary from the traditional lecture format,
project-based learning, online courses, game-based learning, to many others 13. Programming is a
skill as well as an intellectual discipline and as such requires the student to not only study
reference materials but to physically practice constructing programs as well. Moura et al. 11
examined active learning approaches in the teaching of introductory computer science courses.
Her team defined a pedagogical distinction between deductive and inductive teaching
approaches. In the deductive approach, the course is lead by theories and higher order concepts,
from which the skills would then derive; in the inductive approach students began with hands-on
examples and learned theories on a “need-to-know” basis, studying each theory as it became
necessary. They discovered that students responded favorably to the active learning approach
and that their motivation to learn was higher than in previous semesters that used the traditional
teaching approach.

Learning motivation is a significant factor toward predicting student success in programming
education, particularly with newcomers to the programming field 3. Law has examined what
motivating factors existed in an e-learning introductory programming course 8. Among the more
motivating attributes they discovered was that learning tasks that augment “individual attitude
and expectation”, and provide “clear direction”, and “reward and recognition” were among the
most motivating. Hawi 4 examined student beliefs as to why some students performed poorly in

an introductory programming course. Students attributed “lack of practice” and “learning
strategy” among the important causal factors with “learning strategy” being attributed by all
students who performed well in the course. McClure et al. 10 observed that students in any
subject are likely to express a “self-serving bias” when suggesting the cause of their academic
success or failure. The self-serving bias is the tendency for individuals to attribute their academic
successes to internal factors (intelligence, hard work) and their failures to external factors (luck,
unfair grading). This research clearly shows the relationship that exists between student success
on an assessment and their belief that they have the ability to succeed. These findings
demonstrate the need to test our assessment to elicit how students feel about our assessment
approach and determine to what extent they believe it is engaging and fair.

Many novel approaches have been implemented to optimize and improve programming
education. Lee 9 describe an approach for training teachers using a visual programming
environment called Etoys in combination with pair programming and cognitive apprenticeship.
Lee’s approach was particularly interesting as it allowed teachers who may not have themselves
been skilled in programming to become sufficiently proficient that they could create their own
educational software applications thus enabling cross pollination of teaching ideas from outside
the fields of computer science. An approach described by Villaroman et al. 18 involved using the
Microsoft Xbox Kinect technology to provide students a completely different way of thinking
about programming and problem solving. Rajabi constructed an artificially intelligent software
agent that analyzed how software knowledge is acquired and attempted to derive optimal
solutions. The presence of these innovative approaches indicate the widespread desire to
discover groundbreaking new approaches to teaching computer programming

Computational Thinking
Computational thinking is the cognitive abstraction of programming that involves problem
solving, designing systems, and understanding human behavior and cognition 19. Cognitive
thinking separates the process of constructing a step-by-step approach from the syntax of the
programming language itself. Nathan 12 describes a continuum of teaching technique by the
sequence in which formalisms, the concepts and theories of a discipline, are presented to the
learner. He argues that a formalisms first (FF) approach is incorrect and, rather, a learner is best
served by an inductive approach in which students are exposed to specific instances early in their
education in order for concept generalization to derive from that direct experience. This mode of
thinking necessarily advocates strongly for problem-based and inquiry-driven learning
approaches. Scott 16 identifies today’s students’ apparent weakness in learning problem-solving
skills and requirement abstraction (i.e., formalisms) and also advocates for a focus on late
formalisms, early skills approach to teaching programming. 6 presents a design and test of a
system called LEGCO which involves allowing students to construct conceptual meaning based
on their interaction with geometric primitive objects in a C programming environment. Her
research demonstrated that students performed better in this bottom-up environment than in the
traditional Turbo C compiler environment. Kordaki et al. implemented a similar system called
SORTING 7 that used a similar approach but focused instead on teaching sorting algorithms.
Periera et al. 14, noting the difficulty students had in translating from a concept-first approach,
implemented a problem-based learning approach that utilizes the concepts of cellular automata
and fractals to provide students an opportunity to learn from an example-first approach. They
found that their system did produce useful results providing students were first coached on the

fractals and cellular automata. These research results suggest strongly that exercises that focus on
application over conceptualization are, perhaps paradoxically, more likely to result in students
acquiring the ability to abstract and generalize their knowledge more quickly than if they are
taught the concepts alone.

Methodology

Overview
Students were administered the assessment on the last day of the semester in lieu of a lecture.
Concurrently, students had been working in self-selected groups together on a large coding
project. At the beginning of class session, the students were instructed to assemble into the same
groups as their coding project. All students were handed the source code for a text-based C++
program. The program utilized: variables, decisions, loops, arrays, and functions. A large stack
of textbooks that covered a number of different programming languages was available at the
front of the room. Each group was instructed that they had the entire course period to transcribe
onto paper, using one of the unfamiliar languages, a version of the provided source code. The
available programming languages were: Java, C#, Python, Objective-C, PL/SQL, and JavaScript.
Students were allowed to talk freely, use the provided textbook, and utilize any online resources
they liked using their personal laptops and smartphones.

Four proctors were available for the students as a resource to assist with technical questions and
to monitor the teams’ progress. The proctors were the course instructor, two graduate teaching
assistants, and an industry professional from the games industry who is also an advisor to our
academic department. Students were allotted 50 minutes to complete the task. They were
instructed that the finished program did not need to compile, but that the results should capture
the logic of the provided source code as closely as possible.

Upon completion of the activity, all subjects were emailed a hyperlink to an online survey that
asked five questions. Students were expected to respond within three days in order to receive
credit for participation. Student responses were stored in an online database (Qualtrics) and
analyzed using the system’s available statistical analysis tools.

Design
This study used a Posttest only design with four variables of interest: dependence on course
pedagogy, teamwork, confidence, and enjoyment. All measurement data was collected from a
posttest web survey that students filled out.

Survey
Four Likert-style questions were presented to the students with available responses of: Strongly
Disagree, Disagree, Neither Agree Nor Disagree, Agree, and Strongly Agree. A fifth open-ended
question was also included. The questions were as follows.

1. Having a strong grasp of programming fundamentals was necessary for this exercise.
2. I could not have done this exercise without the help of my team.
3. As a result of this exercise, I feel more confident about learning other new programming

languages.

4. I enjoyed this exercise.
5. What did you like or dislike about this exercise?

Subjects
The entire subject pool consisted of 51 students, 34 of whom filled out the post-assessment
survey. Subjects were rewarded with 10 points for participation. There was a total of 600 points
awarded throughout the course of the semester.

Limitations
This study made no attempt to measure the accuracy of student work. The assessment was
intended primarily as a participatory exercise that allowed students to practice generalizing the
material they learned in the course into a different language context. Source code was written on
paper rather than on a computer, which has a material effect on the viability of the source code
the students produced (this is particularly true of Python).

Results

The observed results of the Likert questions are listed below.

1. Having a strong grasp of programming fundamentals was necessary for this exercise
Answer

Response %
1 Strongly disagree

2 6%
2 Disagree

3 9%
3 Neither Agree nor Disagree

3 9%
4 Agree

14 41%
5 Strongly Agree

12 35%
 Total 34 100%

Statistic Value
Min Value 1
Max Value 5
Mean 3.91
Variance 1.36
Standard Deviation 1.16
Total Responses 34

2. I could not have done this exercise without the help of my team
Answer

Response %
1 Strongly disagree

1 3%
2 Disagree

6 18%
3 Neither Agree nor Disagree

4 12%
4 Agree

13 38%
5 Strongly Agree

10 29%
 Total 34 100%

Statistic Value
Min Value 1
Max Value 5
Mean 3.74
Variance 1.35
Standard Deviation 1.16
Total Responses 34

3. As a result of this exercise, I feel more confident about learning other new programming
languages
Answer

Response %
1 Strongly disagree

1 3%
2 Disagree

3 9%
3 Neither Agree nor Disagree

8 24%
4 Agree

21 62%
5 Strongly Agree

1 3%
 Total 34 100%

Statistic Value
Min Value 1
Max Value 5
Mean 3.53
Variance 0.68
Standard Deviation 0.83
Total Responses 34

4. I enjoyed this exercise
Answer

Response %
1 Strongly disagree

0 0%
2 Disagree

4 12%
3 Neither Agree nor Disagree

12 35%
4 Agree

14 41%
5 Strongly Agree

4 12%
 Total 34 100%

Statistic Value
Min Value 2
Max Value 5
Mean 3.53
Variance 0.74
Standard Deviation 0.86
Total Responses 34

The qualitative responses are not included in this manuscript as they were included in the study
primarily to guide development of future iterations of the assessment. However, among the most
common praise offered by students was that many students enjoyed the challenge the exercise

presented; while the most common critique was that they would have liked more time to finish
their work.

The Likert data above show clear positive student reception along all four observed dimensions.
All measured variables showed mean scores that were above the theoretical average.

Conclusion

The primary objective of this study was to determine student perceptions of our new assessment
and whether they regarded the assessment as useful, fair, and enjoyable. Student reports show
that the assessment succeeded along all four observed dimensions. This level of assessment is
however only a first step. Now that the assessment has been determined by our students to be
acceptable, further research is recommended to determine approaches for measuring the quality
of the transcribed code produced by the students. Other important issues remain unaddressed. Is
it best to have an assortment of different languages or perhaps only one different one? If different
languages are used, how can assessment be fairly conducted given the different characteristics of
different languages? Must teachers also be familiar with all the different languages used in the
study in order to provide meaningful grades? Despite these unresolved questions, this assessment
should be considered as, at the very least, a thought-provoking and enjoyable tool for
programming educators to use for encouraging concept generalization.

Acknowledgements

The authors would like to thank Jeff Hanna of Volition Games for his assistance in proctoring
the assessment session.

Bibliography

[1] Deitel, P., & Deitel, H. (2012). C++ How to Program (Vol. 8, p. 1104). Prentice Hall.

[2] Fürst, L., & Mahniĉ, V. (2012). A cooperative development system for an interactive introductory
programming course. World Transactions on Engineering and Technology Education, 10(2), 122–127.

[3] Guzdial, M., & Tew, A. E. (2006). Imagineering Inauthentic Legitimate Peripheral Participation  : An
Instructional Design Approach for Motivating Computing Education. In Proceedings of the Second
International Computing Education Research Workshop (pp. 51–58). Canterbury, UK.

[4] Hawi, N. (2010). Causal attributions of success and failure made by undergraduate students in an
introductory-level computer programming course. Computers & Education, 54(4), 1127–1136.

[5] Henderson, P. B. (2003). Mathematical Reasoning in Software Engineering Education. Communications of
the ACM, 46(9), 45–50.

[6] Kordaki, M. (2010). A drawing and multi-representational computer environment for beginners’ learning of
programming using C: Design and pilot formative evaluation. Computers & Education, 54(1), 69–87.

[7] Kordaki, M., Miatidis, M., & Kapsampelis, G. (2008). A computer environment for beginners’ learning of
sorting algorithms: Design and pilot evaluation. Computers & Education, 51(2), 708–723.

[8] Law, K. M. Y., Lee, V. C. S., & Yu, Y. T. (2010). Learning motivation in e-learning facilitated computer
programming courses. Computers & Education, 55(1), 218–228.

[9] Lee, Y.-J. (2011). Empowering teachers to create educational software: A constructivist approach utilizing
Etoys, pair programming and cognitive apprenticeship. Computers & Education, 56(2), 527–538.

[10] McClure, J., Meyer, L. H., Garisch, J., Fischer, R., Weir, K. F., & Walkey, F. H. (2011). Students’
attributions for their best and worst marks: Do they relate to achievement? Contemporary Educational
Psychology, 36(2), 71–81.

[11] Moura, I. C., & van Hattum-Janssen, N. (2011). Teaching a CS introductory course: An active approach.
Computers & Education, 56(2), 475–483.

[12] Nathan, M. J. (2012). Rethinking Formalisms in Formal Education. Educational Psychologist, 47(2), 125–
148.

[13] O’Grady, M. J. (2012). Practical Problem-Based Learning in Computing Education. ACM Transactions on
Computing Education, 12(3), 1–16.

[14] Pereira, H. B. D. B., Zebende, G. F., & Moret, M. a. (2010). Learning computer programming:
Implementing a fractal in a Turing Machine. Computers & Education, 55(2), 125–148.

[15] Rajabi, M., Aris, T. N. M., & Sulaiman, N. (2013). Computational problem solving architectural design
based on multi - agent. Journal of Theoretical and Applied Information Technology, 58(2), 311–318.

[16] Scott, A. S. (2010). Using Flowcharts , Code and Animation for Improved Comprehension and Ability in
Novice Programming Certificate of Research. University of Glamorgan.

[17] Triantafyllakos, G., Palaigeorgiou, G., & Tsoukalas, I. a. (2011). Designing educational software with
students through collaborative design games: The We!Design&Play framework. Computers & Education,
56(1), 227–242.

[18] Villaroman, N., Rowe, D., Ph, D., & Swan, B. (2011). Teaching Natural User Interaction Using OpenNI
and the Microsoft Kinect Sensor. In Proceedings of the 2011 Conference on Information Technology
Education (pp. 227–231). West Point, NY: ACM Press.

[19] Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3), 33–35.

