
Multi-team Projects for Introducing Software Engineering

Steve Chenoweth (chenowet@rose-hulman.edu), Chandan Rupakheti (rupakhet@rose-

hulman.edu), Sriram Mohan (mohan@rose-hulman.edu) and Shawn Bohner (bohner@rose-

hulman.edu)

Rose-Hulman Institute of Technology

Abstract

Full-sized industry-related and service learning projects can be tackled by coordinated teams, to

provide the enthusiasm of an authentic project while undergraduate computer science and

software engineering students learn the principles of software engineering. Now in our second

year of this experiment, we have found that having one large, realistic project for a whole class

more closely resembles industry experience. Furthermore, the single focus of the class generates

many examples and activities applicable to every student, as they learn topics like requirements,

project management, architecture, and design. The project size lends itself to full-year or multi-

year duration, adding to the realism of the student experience. Regular client interaction can be

rolled into the classroom experience (such as via Skype and Google+ Hangout). We report on

differences that must be considered in this curriculum approach. For example, project and client

selection are crucial steps toward success of the class, and critical interactions occur among the

coordinated teams.

Introduction and historical background

A key challenge for most engineering disciplines is to give students a “near real-world”

experience while in school, where they can refine knowledge acquired in the classroom and

develop skills necessary to succeed in the profession. For software this challenge is exacerbated

by the fact that systems which need the engineering discipline are usually large enough that they

require teams of engineers to work together to produce the software, and to integrate it with other

teams. This is the aspect that we focus on in this paper – projects with coordinated teams. How

can students identify their misconceptions early, about how to work in this complex

environment, without dire consequences that they might face in their first real job? We would

like for them to learn the human and logistics sides of this organizational complexity, in school,

where they are “safe” and while coaching can be administered. Such effort makes the classroom

experience even more beneficial, both to the students and to their future employers.

Computer science first, then software engineering

Building on computer science (CS) foundations like representing and processing data, software

engineering (SE) concentrates on developing/evolving software over time, addressing scale and

quality principles. SE is still a nascent discipline and, as such, has fewer canonical methods for

developing software systems. The field is growing so fast that relevant technologies used to

develop software have short half-lives and students must do a great deal of hands-on learning

and cooperative learning in teams. To undergrads, it lacks the verisimilitude of CS because of

these shallower underpinnings.

Our pervasive endeavor to teach teamwork

From their first software class onward, our students at Rose-Hulman are exposed to sharing their

effort with other students – initially in small group activities in the classroom, evolving to team

homework and projects, and ultimately to the capstone senior design project in their senior year,

collaborating with three or four other team members to develop a substantial project for a real-

world client. We see achieving via teams as one of our key learning objectives, because in

industry, software engineers seldom function for very long in isolation.

Over the years, we have striven to give our students project experience that more realistically

maps to the world they will function in. Initially, faculty who had experience in industry devised

projects, and all the student teams in the class would do the same project. While this made it easy

for instructors to set up and assess learning objectives, without having reified clients the method

did not reflect career projects very closely. To students, the projects felt fake.

We then shifted to projects with outside clients, which were of a size that, we guessed, a team of

four students could complete in a year. Most teams did deliver a system, yet the projects were

necessarily small and often were not required to integrate well into the client’s own environment.

So, we moved to providing two major software project experiences. First is a yearlong junior

project where students take a sequence of three courses (Software Requirements Engineering,

Software Design, and Software Construction and Evolution). The sequence serves as a medium

for reinforcing previous CS concepts and principles, while introducing the key SE skills. This

prepares them for the second project – a more substantial and autonomous capstone senior design

project in their fourth year.

The present study builds on that basic course structure. It is an advanced exercise in generating

teamwork skills in undergraduate engineering students. The students are all juniors majoring in

CS or SE. The ambitious goal is for them to tie SE skills, as they learn these formally in the

classroom, to large, multi-team projects that require SE skills to succeed. All the projects are

real, with clients who have more than a passing interest in their success. Integration with the

client’s real-world environment is a major component of the projects, adding both difficulty and

face-validity. In one of this year’s projects, the specific project goal is integration of multiple

tools on multiple devices for the client.

There is beyond-the-usual risk in this large-project approach – more stress and strain, more

temporal and architectural dependencies, and multiple constituencies. At the same time, a

substantial project like this proves the value of the processes used, in ways that typical school

projects do not. It requires that students not only work well on a team of four or five, but that

they also synchronize their work with other teams in rather precise ways. The teams rely on one

another to produce understandable and coordinated matching artifacts.

We are now half-way through our second year of trying that avenue for teaching SE. This paper

is an experience report on that enterprise.

Should an engineering department teach this?

At our school, two of the three junior year courses, where students work on these projects, are

required of CS majors as well as SE majors. This is in addition to both majors’ following-up the

junior project experience with a full-year capstone senior project. Furthermore, all but a few of

our CS courses culminate in a multi-week group project. That includes courses in the beginning

CS sequence. We have a rather larger-than-normal departmental dedication to teaching

teamwork. We believe we are in synch with The Engineer of 2020 report, that, “the engineering

profession recognizes that engineers need to work in teams.”
2
 Our unusually high value for

delivering this “soft” outcome deserves an explanation.

Purely technical advances from research are allowed to move into undergraduate engineering

education in an orderly way; say, a new, faster, algorithm discovered in mathematics or CS. The

need for teamwork is a bit different. When the stimulus comes from outside research like this,

from outside academia, in fact, then an automatic curriculum adjustment is not guaranteed. We

believe this adjustment-source issue has been a factor making it difficult to get the proper

amount and type of teamwork learning into baccalaureate engineering programs.

From a systems perspective, undergraduate education institutions get high school graduates and

produce able learners capable of greater personal and career contributions to society. In science

and engineering schools, this system-like transition is even more official, given that our

graduates are targeted to a discipline, often to help shape a specific industry. It has face-validity

that, on one end, our undergraduate pipeline should look familiar to incoming high school

graduates (i.e., they have prepared for entrance into college), and on the other end the pipeline

should make their chosen industry look familiar when they arrive there from college. We strive

to impedance-match our inputs and outputs. The matching effort works in a lopsided way,

however. We ourselves can see the implications of mismatching the expectations and

capabilities of incoming freshmen (i.e., lack of prerequisite knowledge or maturity). On the

other end of the pipeline, the graduates more-or-less disappear from our campus. How can

educators better condition our graduates for the workforce and the expectations of an industry

culture?

Providing rich experiences in teamwork is an example of an output that would closely meet the

needs of today’s engineering. Gone from the industrial landscape is the engineer who needs few

social skills as he works alone at a drafting table. Almost all engineering is accomplished now

via interactive and interdisciplinary teamwork. On large projects, the teams are complex; the

interactions between them often represent the interfaces between the subsystems each team

generates.

Academia tends to respond slowly to changes like this; perhaps due to our separation of concerns

trying to keep a principled mindset. Our engineering curricula, especially, are always “full.”

This is commonly cited as reason-enough not to do anything additional, particularly when the

graduates are already being hired. If suggested new material falls outside the traditional scope of

our departments, it can be delayed or rejected out-of-hand, as well. Regarding teamwork in

particular, we also may be lulled into not striving to produce this in students because academia

itself relies less on seasoned teamwork than engineering industries now do. Teamwork further is

a slippery place for student evaluation, where educators must manage potential cheating; hence,

team assignments have some negative baggage that may produce barriers.

Even with well-meaning department advisory boards (members from industry and other

educational institutes), subtle changes like this may go undetected as board members (often

alumni) harken back to the good-ole days and assume teamwork will be learned in companies or

on internships.

Increasing the influence of industry, beyond this historical advisory board level, may be resisted

by a department. We tend to see ourselves as originators of ideas, prime movers of both

education and of change in the industries we serve; change goes from our world out into that

other world. Thus we see reported statistics like University of Michigan’s, “that 72% of recent

undergraduate alumni rated ‘ability to function on a team’ as extremely important in their

professional experience, but only 47% felt that U-M provided excellent preparation in this

regard.”
3

One may need to stir the mix of underlying rationales, to cause more to happen in a department.

Having an effective diversity of perspective requires true diversity in backgrounds. Sprinkling a

sufficient number of faculty from industry, into a department, does improve this impedance

match for graduating students. Like some advisory board members, such faculty have seen new

hires fail before their eyes, and as faculty, they now have the direct means to do something about

that. Teamwork is an example of a skill that makes all the difference to new hires, and it is one

which is resisted as being “a soft skill” by college engineering departments, unless enough of

them have seen the results of bad teamwork in industry, for themselves.

The complexity of a “soft” subject

Of course, it takes more than desire to teach teamwork effectively. In these areas, “Our

teamwork and leadership vocabulary is generally underdeveloped and our teaching strategies are

also behind what leadership and team researchers currently know.”
4
 Use of resources in the other

direction also has been done. Goldfinch, et al showed that group working skills in

undergraduates could be improved by bringing in the final arbiters, their future employers, to

coach the students.
5

Teamwork is not a simple topic, whether “soft” or not. And teaching it, in the artificial

classroom world, has even more wrinkles. Teamwork is, “usually challenging for inexperienced

students who are struggling with technical as well as program management and team building

issues. There also appears to be a general lack of ability by students to function on teams.” As

Massie and Massie described it, students cannot be expected to learn this on their own.
6

It requires skill just to understand how teams are doing. Teamwork effectiveness can be self-

assessed by team members, by applying standardized surveys, by measuring factors associated

with high-functioning teams, or by valuing the team’s results.
7

At Rose-Hulman, our Computer Science and Software Engineering Department has been

working to better teach teamwork for over 25 years now. Our first “serious push” to get

teamwork into everything was in 1990. The large, multi-team projects we describe in this paper

are the latest wrinkle in that long-term endeavor.

Like many schools, Rose-Hulman had experienced problems in getting SE topics across to our

software students. Processes and practices were a hard sell to them partly because the work

students had done up to then, and the projects they were given to accomplish during SE classes

themselves, did not really rely on these processes and practices, in order to be victorious. Often,

one night of heroic programming and testing by a single motivated team member was all it took.

This haphazard approach has intrinsic rewards for the students, and it is bad practice for the

orders-of-magnitude-harder projects of industry. We were making our code-slinger students eat

spinach, on the promise that the “vitamins” would make them grow up healthy.

Methods – Moving to the multi-team approach

The large-project solution to this conundrum, of proving the value of SE principles to

undergraduates, was developed over the summer before our 2012-13 school year. We had been

using outside clients in our junior sequence of SE classes, for five years, as a means of adding

realistic engagements to the student experience. One client that we were talking to, during that

summer, had in mind a much larger project than a single team of four to five students could

accomplish, even over the whole school year. It was a great project, creating a very practical

software tool for him and other people engaged in similar work. The project involved building

of a server platform and of applications running on multiple devices. So an additional incentive,

for us to do a larger project, was the desirability of this particular activity. The project, with its

one client, ran during the full 2012-13 school year, and the system was delivered at close to

completion, at the end of the spring term. During the first two terms of the year, the project

represented a single, common activity for one whole section of a course. There were 20, 17, and

10 students working on the project simultaneously, over the three progressive terms of the school

year. The lower number of students in the third term was due to the fact that this course is

required only for SE majors, not CS majors.

Over the summer of 2013, we recruited four clients to do similar, large-scale projects. During

the fall and winter terms, these have represented the sole project for each of four sections of the

SE courses taken. For the fall term, the four sections had 21, 23, 21, and 22 students; for the

winter term they have 20, 15, 25, and 25, respectively. We have yet to organize them for the

spring term this year.

Operational considerations

In both school years, the clients have met regularly with the entire class. This has averaged one

meeting a week, either face-to-face, or over Google+ Hangout, for close to 50 minutes each time.

Clients have discussed plans, reviewed artifacts and parts of the systems developed by their

classes, and provided feedback on those.

All the projects have been managed via a Scrum-style process.
1
 This process was adopted with

the goal of showing the real clients early developments, and gaining their feedback. We believed

it also enabled the students to do coding and testing early on, and to see the value of setting up

processes that complemented rapid development and repeated deliveries.

Both years, the nominal course content was Software Requirements Engineering in the fall,

Software Design in the winter, and Software Construction and Evolution in the spring. Had we

used a Waterfall process, we could have taught these subjects in a just-in-time fashion for the

project development work. However, we felt that the advantages for using an agile process

outweighed this more orderly approach.

In previous years, we had not so seriously pushed, to have each team’s project be fully agile,

simply because this meant they had to do things like development early-on in the project, before

we would have taught all the topics they would need to make use of. Agile is not really for

beginners; we believe that anyone teaching SE subjects runs into this same problem: If the team

is supposed to deliver something with real code in it, say, a month into the project, then how do

they do that using the parts of SE which have not yet been taught? For the much larger projects

we were now going to be using in class, we felt it was more important to do the early, agile

deliveries. Thus, there would be some parts that needed to be reworked, once students

discovered better ways to do things. This would be especially true of code done while still

studying requirements, code which would not take advantage of things like design patterns and

solid architectural principles learnt later.

Students are responsible for the client meetings. In sections where the clients are remote, we

have a given team run the Google+ Hangout meeting on behalf of all sections. In all cases, each

team of about 4 students is responsible for presenting and describing progress to the client, for

their part of the work. They also are responsible for capturing client reactions, and for

documenting agreed-upon next actions.

For special coordination needs, each of the small teams has a person responsible to meet or talk

with all the other teams. This has been done, for example, to assemble all the requirements into

a single document, for deciding an integration process strategy, and for making decisions about

common back-end interfaces. Similarly, any team discovering valuable information from an

outside source has a responsibility to pass that on to everyone else who needs to know. So,

someone from the team with news needs to do that coordination.

Reducing uncertainty

We also attempted to anticipate issues that we thought especially added to the risk for the

approach we were taking. Where possible, we had multiple clients for one project, or a client

who could step in if anything happened to the primary client. We were clear with the clients that

this project would take a couple hours a week of their time, on average. We had extensive

discussions with them about the scope of the project. Suppose that what they wanted turned out

to be much less work for our students than it was originally projected? This is worse from a

pedagogical perspective, than if it turned out to be more work. Or, suppose that the project was

ideal for one of our three courses over the school year, but terrible for another? That could

happen. For instance, the second course is all about object-oriented design. It was possible that

the project would end up being best done with some non-Object-Oriented type of tool, such as

JavaScript. With smaller projects, such an event would be a tragedy only for four students, not

for a whole class.

We had to set up the methods the students would use for running their projects. We could not

have them employing different tools for saving artifacts or managing code, say. Teams had to

see what each of the other teams were doing, which might interfere with ideas of grading them

without knowing how others did something. Interactions with other teams had to be an expected

part of their process. It was tempting to make common project success or failure the main basis

for the course grade for everyone! Further, with so many interdependent projects (a project of

projects), it was tempting to become the program manager for the integrated projects –

potentially encouraging the students to take less initiative and wait for direction from the

instructor!

Team processes like code reviews and testing practices needed to be in place from an early time

in the first course. The database had to work for all the teams writing apps against it! Software

industries use a variety of project management tools to facilitate these activities in their own

software development processes. Due to the scale of our projects, we soon realized that our

projects were no exceptions. We adopted several tools to facilitate collaboration among teams

and their client. We use Google Groups and Google Docs to record meeting notes and for other

project-related discussions. We use the Github Wiki to document the design of the project and

other project artifacts. Github is also used for source code management and bug tracking. Trello

boards are used for sprint planning and resource allocation. Use of such tools thus gave our

students a feel of the software development process practiced in the real world!

We needed to pay attention to the usual issues of composing and running teams. How are known

skills allocated across teams, for instance? And how are teams rewarded, with grades in our

case, when they all depended on each other in ways that are excruciating to separate?

Results

The opening result was that students in all the sections were excited about the idea of doing a

substantial project which their client cared a lot about. The apparent advantage was that the

client would stay engaged throughout the project. In some of the sections, we additionally

managed to make the project something that students themselves cared about – it related to their

academic life at Rose-Hulman! The size, importance, understandability, commonality and

relevance all played a part in this enthusiasm.

Roles of the instructor

For the instructor, these projects were more difficult to manage than small projects. There were

more pieces to worry about. And, the instructor ended up, in each case, being roughly the class

project’s resource manager – the first-level manager who handles personnel as well as project

matters. For example, with our previous, single-team projects (four or five students on a single

project), the students were responsible for arranging and holding all their client meetings,

reporting the outcomes to the instructor. With all teams in the class involved, the instructor had

to take over making sure this happened – and the only logical time for the client meeting was

during one of the weekly classes. Thus, the client had to be available at such a time!

In this sense, we lost some of the independent responsibility that had been forced on smaller

teams, to do all their coordination work with the client.

If a client could not make a particular meeting date, this impacted everyone, typically for a week.

In several cases where this happened, we were lucky to have a second client who was fully

informed, and who took their place at the meeting with the class.

The instructor also now played project manager, in terms of handing out work on the project to

the teams. When we had had simple teams of four or five, typically one student played the

project manager or scrum master role, deciding who is supposed to do what, next. Now, on

some of our large projects, there was an obvious way to divide the work over the whole class,

and on others there was not; and this division fell upon the instructor to do, regardless. The first

year, our project had different devices upon which the same application was to run. Three teams

were given the task of doing this application on a particular device, while the remaining team got

the task of creating the server-side software. The second year, for two of the four large projects,

there was only one interface, so the application itself had to be divided among the teams.

On some of the projects, it was possible for the instructor to restructure which teams were doing

what, as is done regularly by project managers. This was doable because all the teams were

familiar with the whole project. Suppose there was a irreconcilable difference between two team

members, or there was a team member who dropped the course; the instructor could reassign

team members among teams, to best address the situation.

Complex coordination

At the end of our fall requirements engineering course, we needed to integrate all the

documentation for each large project. This was accomplished by appointees from each team,

working together as a cross-team. The clients were not happy with the results; mostly, some

teams’ representatives worked harder on the integration task than others. This left those

contributing the most with the option of finishing others’ work themselves, or knowing that the

final result would be uneven. As instructors, we elected to allow the clients to see an uneven

document, rewarding or punishing those who were on this integration team for their level of

contributions. Further, the students would have an opportunity to reflect their concerns in peer

evaluations, which served as a governor on student participation in the project teams.

Student outcomes

Student evaluation comments at the end of the fall course showed generally that students

appreciated having a larger project. Probably the most important aspect of this was that they

maintained their excitement about the project over a long period of time. And that was surely

fueled by having the same project shared by a whole section of the course. The classes met four

times a week, and every day’s class felt like a mass project get-together – Better even than the

daily standup meeting which is standard for Scrum.

We allocated grades by using several stratagems to deduce individual accomplishments: (1) We

also gave individual work to do (homework assignments and exams), to verify that every student

could accomplish each of the SE skills. (2) We used records such as weekly status reports and

GitHub commits to track the activity of individuals on each team, and to provide the launching

point for individual teamwork counseling. And, (3) We got feedback multiple times from team

members, in the form of peer evaluations, using standardized questionnaires.

All students did individual journals, and they turned these in with each project milestone (or

sprint). These were reflective documents demonstrating critical thinking, which they were taught

to do like engineering journals, not like blogs.

We further tried to apply a “fairness doctrine” to the project success. As in these projects,

students will encounter in their careers that sometimes it is not the fault of the development

organization when a project fails. Certain of our projects are inherently speculative – the first of

their kind – and clients change their minds enormously about what they want, in addition to

things turning out not to work, technically. And large projects probably will not be completed

entirely to a client’s satisfaction, in synch with the end of the school year.

Discussion – Future developments and studies

We are now in the middle of our second year of running these large, multi-team junior projects,

while teaching fundamentals of SE process. We believe that the idea has sufficient promise to

continue at it, exploring refinements and variations, for a good while longer.

Agile is fragile

The issue of how to introduce topics to people unfamiliar with them, out of sequence with

performing these tasks on a project, remains an issue for using agile development methods in a

project accompanying SE principles. This problem is shared, also, for smaller projects. In our

own history, we simply ignored it when the problem was an aspect of projects owned by smaller

teams. We either let a team move ahead, to deliver early, on their own, or else nudged them

toward more of a waterfall approach.

A new role model

As instructors, our main contribution to the class may be demonstrating what an effective

resource manager does, so that, acting through the class-sized full team, we lead them to achieve

difficult technical goals. Being able to do this role well probably requires some background on

the instructor’s part. The traditional presentation of us as classroom teachers is receding in

comparison, though it has to remain because of the course outcomes. A possible long-term goal

is for it all to be problem-based learning (PBL),
10

 with most skills developed by students on a

need-to-know basis. That PBL likely will be achieved, in the future, more via self-study than

lecture.

Tricky grading will persist

One could speculate as to how well the idea of grading school assignments goes with providing

the large-project experience to students. Neatly defined individual work no longer exists, on the

project itself. The latest insult to clean grading is the fact that each team’s work is often needed

to be shared before grading essentially by the whole class, as a project resource, as soon as it is

created. Also, overall project needs do not always get allocated evenly to individual teams –

some have more to do. Can a whole class be failed, if the project is not acceptable to an outside

client?

The future for SE education

Ultimately, the larger, integrated project-of-projects concept offers great promise for the learning

outcomes in SE program. We are particularly interested in the transition from a “toy” project

with four team members (an inadequate medium for teaching key scale and team aspects of SE)

to a more real-world, multiple-team integrated project that serves to highlight the integration,

large-scale design coordination, and especially the team interdependency issues that arise in real

software and other engineering projects. As we work through the challenges of managing the

parts and we gain experience in how to capitalize on coaching students about the concepts we

teach in the classroom, we are hopeful that the approach will be useful for the SE education

community, and perhaps for the engineering education community as a whole.

All software projects tend to run over their allotted time anyway, and larger projects are worse.

With such foresight, these projects can be targeted as multi-year to begin with, which further

gives a realistic software maintenance side to what students must do in the following years.

Service learning projects naturally fall into this multi-year category, as exemplified by projects

done in Purdue’s EPICS program.
8
 Here, local clients tend to be relatively stable and accessible,

their needs for automation are large and long-term, and these needs in fact grow over time as

clients become aware of what can be done for their non-profit ventures via software. At Purdue,

this “mission creep” is handled by having an EPICS team of 15 or so students assigned to a

client, rather than to a specific project.

With very large projects, a junior year engineering experience like we have described could

simply continue into successive years, with each year’s students doing another “release.”

Continuity could be established by having the prior year’s students, now seniors, serve as

advisers, in addition to the obvious reliance on documentation and on instructor and client

persistence. It also is possible for projects, planned to be two years in duration, to move with the

students, from this junior year experience into their capstone senior design project. Such a plan

would further allow for an opportunity, that some or all of the junior students could intern, over

the summer in-between, at the location where their creation is being used, then return all-the-

wiser to make it work for real!

These teamwork ideas do add risk to the certainty of delivering specific technical content in a

course. The topics they learn most in-depth will rely on the project. Such is the nature of PBL.

And, with a social goal like teamwork being elevated, something else will have less emphasis.

Yet, spending time on teamwork does reflect the realities of the careers we are sending our

engineering students into. For example, 900,000 of the 1.3 million software engineers and

computer programmers in the US spend their time maintaining existing systems, not building

new ones.
9
 Maintenance involves a preponderance of testing time, and system testing is

inherently a large-team-based activity.

References

1. Takeuchi, Hirotaka; Nonaka, Ikujiro. "The New Product Development Game" (PDF).

Harvard Business Review, Jan 1, 1986. http://hbr.org/product/new-new-product-

development-game/an/86116-PDF-ENG.

2. The Engineer of 2020: Visions of Engineering in the New Century, p. 43. National

Academy of Engineering, 2004. http://www.nap.edu/catalog.php?record_id=10999.

3. Finelli, C.J., et al. “Student teams in the engineering classroom and beyond: Setting up

students for success.” CRLT Occasional Papers, Center for Research on Learning and

Teaching, University of Michigan, No. 29 (2011), p. 1.

http://www.crlt.umich.edu/sites/default/files/resource_files/CRLT_no29.pdf.

http://hbr.org/product/new-new-product-development-game/an/86116-PDF-ENG
http://hbr.org/product/new-new-product-development-game/an/86116-PDF-ENG
http://www.nap.edu/catalog.php?record_id=10999
http://www.crlt.umich.edu/sites/default/files/resource_files/CRLT_no29.pdf

4. Mansour-Cole, D. “Updating the Leadership and Team Ideas We Present To Students.”

ASEE IL/IN Section Conference, 2013. http://ilin.asee.org/2013/index_files/mansour.pdf.

5. Goldfinch, J., et al, “Improving groupworking skills in undergraduates through employer

involvement.” Assessment & Evaluation in Higher Education, Vol. 2, No. 1, 1999.

6. Massie, D.D., and Massie, C.A. “Framework for organization and control of capstone

design/build projects.” Journal of STEM Education, Vo. 7, Iss 3, Jul-Dec 2006, p 36.

7. Huyck, M., et al. “Assessing factors contributing to undergraduate multidisciplinary

project team effectiveness.” ASEE National Conference, 2007.

8. See for example https://engineering.purdue.edu/EPICS/About.

9. Donald J. Reifer. Software Maintenance: Success Recipes. CRC Press, 2012. ISBN 978-

1-4398-5166-1. p 1. These are 2008 statistics.

10. See, for example, the discussions at the site for McMaster University, a pioneer in PBL,

at http://cll.mcmaster.ca/resources/pbl.html.

http://ilin.asee.org/2013/index_files/mansour.pdf
https://engineering.purdue.edu/EPICS/About
http://cll.mcmaster.ca/resources/pbl.html

